Superselection structures for C*-algebras with nontrivial center

e-Archivo Repository

Show simple item record

dc.contributor.author Baumgärtel, Hellmut
dc.contributor.author Lledó Macau, Fernando
dc.date.accessioned 2010-02-15T09:01:59Z
dc.date.available 2010-02-15T09:01:59Z
dc.date.issued 1997
dc.identifier.bibliographicCitation Reviews in Mathematical Physics, 1997, vol. 9, n. 7, p. 785-819
dc.identifier.issn 0129-055X (Print)
dc.identifier.issn 1793-6659 (Online)
dc.identifier.uri http://hdl.handle.net/10016/6852
dc.description 35 pages, no figures.-- MSC2000 codes: 46L05, 46L60.
dc.description MR#: MR1475657 (99g:46097)
dc.description Zbl#: Zbl 0893.46046
dc.description.abstract We present and prove some results within the framework of Hilbert C*-systems $\{{\cal F},{\cal G}\}$ with a compact group ${\cal G}$. We assume that the fixed point algebra ${\cal A}\subset{\cal F}$ of ${\cal G}$ has a nontrivial center ${\cal Z}$ and its relative commutant w.r.t. ${\cal F}$ coincides with ${\cal Z}$, i.e., we have ${\cal A}'\cap{\cal F}= {\cal Z}\supset\bbfC\text{\bf 1}$. In this context, we propose a generalization of the notion of an irreducible endomorphism and study the behaviour of such irreducibles w.r.t. ${\cal Z}$. Finally, we give several characterizations of the stabilizer of ${\cal A}$.
dc.format.mimetype application/pdf
dc.language.iso eng
dc.publisher World Scientific Publishing
dc.rights © World Scientific Publishing
dc.subject.other Hilbert C*-systems
dc.subject.other Compact group
dc.subject.other Nontrivial center
dc.subject.other Relative commutant
dc.subject.other Irreducible endomorphism
dc.subject.other Characterizations of the stabilizer
dc.title Superselection structures for C*-algebras with nontrivial center
dc.type article
dc.type.review PeerReviewed
dc.description.status Publicado
dc.relation.publisherversion http://dx.doi.org/10.1142/S0129055X97000282
dc.subject.eciencia Matemáticas
dc.identifier.doi 10.1142/S0129055X97000282
dc.rights.accessRights openAccess
 Find Full text

Files in this item

*Click on file's image for preview. (Embargoed files's preview is not supported)


This item appears in the following Collection(s)

Show simple item record