States of minimal joint uncertainty for complementary observables in three-dimensional Hilbert space

e-Archivo Repository

Show simple item record

dc.contributor.author Sánchez-Ruiz, Jorge
dc.date.accessioned 2010-01-22T16:01:30Z
dc.date.available 2010-01-22T16:01:30Z
dc.date.issued 1994-11
dc.identifier.bibliographicCitation Journal of Physics A: Mathematical and Theoretical, 1994, vol. 27, n. 21, p. L843-L846
dc.identifier.issn 1751-8113 (Print)
dc.identifier.issn 1751-8121 (Online)
dc.identifier.issn 10.1088/0305-4470/27/21/010
dc.identifier.uri http://hdl.handle.net/10016/6595
dc.description.abstract The entropic uncertainty relation for sets of $N+1$ complementary observables $\{A_r\}$ existing in $N$-dimensional Hilbert space, $\sum_r H(A_r) \geq (N+1) \ln((N+ 1)/2)$, is shown to be optimal in the case $N=3$ by explicit construction of the states for which equality holds. We prove that the lower bound cannot be attained when $N$ is even, and, on the basis of numerical calculation, this is conjectured to also be the case for odd $N>3$.
dc.format.mimetype text/html
dc.language.iso eng
dc.publisher IOP
dc.subject.other Entropic uncertainty relation
dc.subject.other Complementary observables
dc.subject.other [PACS] Quantum mechanics
dc.subject.other [PACS] Linear algebra
dc.subject.other [PACS] Matrix theory
dc.title States of minimal joint uncertainty for complementary observables in three-dimensional Hilbert space
dc.type article
dc.type.review PeerReviewed
dc.description.status Publicado
dc.relation.publisherversion http://dx.doi.org/10.1088/0305-4470/27/21/010
dc.subject.eciencia Matemáticas
dc.rights.accessRights openAccess
 Find Full text

Files in this item

*Click on file's image for preview. (Embargoed files's preview is not supported)


This item appears in the following Collection(s)

Show simple item record