Cita:
Approximation Theory and its Applications, 2002, vol. 18, n. 4, p. 1-19
ISSN:
1000-9221 (Print) 1573-8175 (Online)
DOI:
10.1007/BF02845271
Agradecimientos:
The work of the second author was supported by Dirección General de Enseñanza Superior (DGES) of Spain under grant PB96-0120-C03-01 and INTAS
Project INTAS93-0219 Ext.
Given a positive definite matrix measure Ω supported on the unit circle T, then main purpose of this paper is to study the asymptotic behavior of $L_n(\tilde{\Omega}) L_n(\Omega) -1}$ and $\Phi_n(z, \tilde{\Omega}) \Phi_n(z, \tilde{\Omega}) -1}$ where $\tilde{Given a positive definite matrix measure Ω supported on the unit circle T, then main purpose of this paper is to study the asymptotic behavior of $L_n(\tilde{\Omega}) L_n(\Omega) -1}$ and $\Phi_n(z, \tilde{\Omega}) \Phi_n(z, \tilde{\Omega}) -1}$ where $\tilde{\Omega}(z) = \Omega(z) + M \delta ( z - w)$, $ 1$, M is a positive definite matrix and δ is the Dirac matrix measure. Here, Ln(·) means the leading coefficient of the orthonormal matrix polynomials Φn(z; •).[+][-]
Finally, we deduce the asymptotic behavior of $\Phi_n(omega, \tilde{\Omega}) \Phi_n(omega, \Omega)$ in the case when M=I.Finally, we deduce the asymptotic behavior of $\Phi_n(omega, \tilde{\Omega}) \Phi_n(omega, \Omega)$ in the case when M=I.[+][-]
Nota:
19 pages, no figures.-- MSC2000 codes: 42C05, 47A56.