Cita:
Journal of Computational and Applied Mathematics, 2008, vol. 219, n. 2, p. 441-456
ISSN:
0377-0427
DOI:
10.1016/j.cam.2007.06.017
Agradecimientos:
The work of the first author (F. Marcellán) was supported by Dirección General de Investigación, Ministerio de Educación y Ciencia of Spain, under Grant MTM 2006-13000-C03-02, and INTAS Research Network NeCCA INTAS 03-51-6637. The work of the second author (J. Hernández) was supported by Fundación Universidad Carlos III de Madrid.
We analyze a special spectral transform of a measure $\mu $ supported on a compact subset $C$ of the complex plane. A perturbation $\mu _{1}$ of $\mu $ is said to be a Geronimus spectral transform if d$\mu_1 = \frac {\text d \mu}{ -\alpha 2}$ where $\alpha \noWe analyze a special spectral transform of a measure $\mu $ supported on a compact subset $C$ of the complex plane. A perturbation $\mu _{1}$ of $\mu $ is said to be a Geronimus spectral transform if d$\mu_1 = \frac {\text d \mu}{ -\alpha 2}$ where $\alpha \notin C$. We focus our attention in the analysis of the Hessenberg matrix associated with the multiplication operator in terms of the orthogonal polynomial basis defined by the measure $\mu _{1}$.[+][-]
Nota:
16 pages, no figures.-- MSC2000 codes: 42C05; 15A23.