Alvarez-Caudevilla, P. & Galaktionov, V. A. (2015).Branching analysis of a countable family of global similarity solutions of a fourth-order thin film equation. Electronic Journal of Differential Equations, 2015(90), 1–29.
Navarro, G., Tiep, P. H., Vallejo, C. (2018). Brauer correspondent blocks with one simple module. Transactions of the American Mathematical Society, 371(2), 903–922.
Colorado, E., Ortega, A. (2019). The Brezis–Nirenberg problem for the fractional Laplacian with mixed Dirichlet–Neumann boundary conditions. Journal of Mathematical Analysis and Applications, 473(2), 1002–1025
Bernal, F. & Acebrón, J. A. (2016). A Comparison of Higher-Order Weak Numerical Schemes for Stopped Stochastic Differential Equations. Communications in Computational Physics, 20(3), pp. 703–732.
Mompó, E., Carretero, M. & Bonilla, L. (2021). Designing Hyperchaos and Intermittency in Semiconductor Superlattices. Physical Review Letters, 127(9), 096601.
Alvarez Navarro, E., Díaz, B., García-Ariza, M. N. & Ramírez, J. E. (2019). Effects of the second virial coefficient on the adiabatic lapse rate of dry atmospheres. The European Physical Journal Plus, 134(9).
Mancini, S., Bernal, F., Acebrón, J. A. (2016). An Efficient Algorithm for Accelerating Monte Carlo Approximations of the Solution to Boundary Value Problems. Journal of Scientific Computing, 66(2), 577–597.
Díaz, B. & Montesinos, M. (2018). Geometric Lagrangian approach to the physical degree of freedom count in field theory. Journal of Mathematical Physics, 59(5), 052901.
Álvarez-Caudevilla, P., D. Evans, J. & A. Galaktionov, V. (2018). Gradient blow-up for a fourth-order quasilinear Boussinesq-type equation. Discrete & Continuous Dynamical Systems, 38(8), pp. 3913–3938.
Barbero G., J. F., Díaz, B., Margalef-Bentabol, J. & Villaseñor, E. J. (2021). Hamiltonian Gotay-Nester-Hinds analysis of the parametrized unimodular extension of the Holst action. Physical Review D, 103(6), 064062
Calvo, M. P., Sanz-Serna, J. M., & Zhu, B. (2020). High-order stroboscopic averaging methods for highly oscillatory delay problems. In Applied Numerical Mathematics, 152, 466–479
Álvarez-Caudevilla, P., Colorado, E. & Fabelo, R. (2017). A higher order system of some coupled nonlinear Schrödinger and Korteweg-de Vries equations. Journal of Mathematical Physics, 58(11), 111503.