dc.contributor.author |
Velasco, Carlos
|
dc.date.accessioned |
2009-06-04T11:15:42Z |
dc.date.available |
2009-06-04T11:15:42Z |
dc.date.issued |
1999-08 |
dc.identifier.bibliographicCitation |
Journal of Econometrics. 1999, vol. 91, nº 2, p. 325-371 |
dc.identifier.issn |
0304-4076 |
dc.identifier.uri |
http://hdl.handle.net/10016/4346 |
dc.description.abstract |
We study asymptotic properties of the log-periodogram semiparametric estimate of the memory parameter d for non-stationary (d>=1/2) time series with Gaussian increments, extending the results of Robinson (1995) for stationary and invertible Gaussian processes. We generalize the definition of the memory parameter d for non-stationary processes in terms of the (successively) differentiated series. We obtain that the log-periodogram estimate is asymptotically normal for dE[1/2, 3/4) and still consistent for dE[1/2, 1). We show that with adequate data tapers, a modified estimate is consistent and asymptotically normal distributed for any d, including both non-stationary and non-invertible processes. The estimates are invariant to the presence of certain deterministic trends, without any need of estimation. |
dc.format.mimetype |
application/pdf |
dc.language.iso |
eng |
dc.publisher |
Elsevier |
dc.rights |
© Elsevier |
dc.subject.other |
Non-stationary time series |
dc.subject.other |
Log-periodogram regression |
dc.subject.other |
Semiparametric inference |
dc.subject.other |
Tapering |
dc.title |
Non-stationary log-periodogram regression |
dc.type |
article |
dc.type.review |
PeerReviewed |
dc.description.status |
Publicado |
dc.relation.publisherversion |
http://dx.doi.org/10.1016/S0304-4076(98)00080-3 |
dc.subject.eciencia |
Economía |
dc.identifier.doi |
10.1016/S0304-4076(98)00080-3 |
dc.rights.accessRights |
openAccess |