dc.contributor.author | García García, Antonio![]() |
dc.contributor.author | Muñoz-Bouzo, María José |
dc.date.accessioned | 2022-12-15T09:16:55Z |
dc.date.available | 2022-12-15T09:16:55Z |
dc.date.issued | 2015-07-01 |
dc.identifier.bibliographicCitation | García, A. G. & Muñoz-Bouzo, M. J. (2015). Sampling-related frames in finite U-invariant subspaces. Applied and Computational Harmonic Analysis, 39(1), 173-184. |
dc.identifier.issn | 1063-5203 |
dc.identifier.uri | http://hdl.handle.net/10016/36185 |
dc.description.abstract | Recently, a sampling theory for infinite dimensional U-invariant subspaces of a separable Hilbert space H where U denotes a unitary operator on H has been obtained. Thus, uniform average sampling for shift-invariant subspaces of L-2(R) becomes a particular example. As in the general case it is possible to have finite dimensional U-invariant subspaces, the main aim of this paper is to derive a sampling theory for finite dimensional U-invariant subspaces of a separable Hilbert space H. Since the used samples are frame coefficients in a suitable euclidean space C-N, the problem reduces to obtain dual frames with a U-invariance property. |
dc.format.extent | 12 |
dc.language.iso | eng |
dc.publisher | Elsevier |
dc.rights | © 2014 Elsevier Inc. All rights reserved |
dc.rights | Atribución-NoComercial-SinDerivadas 3.0 España |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ |
dc.subject.other | Stationary sequences |
dc.subject.other | U-invariant subspaces |
dc.subject.other | Finite frame |
dc.subject.other | Dual frames |
dc.subject.other | Moore-Penrose pseudo-inverse |
dc.title | Sampling-related frames in finite U-invariant subspaces |
dc.type | article |
dc.subject.eciencia | Informática |
dc.identifier.doi | https://doi.org/10.1016/j.acha.2014.09.008 |
dc.rights.accessRights | openAccess |
dc.type.version | acceptedVersion |
dc.identifier.publicationfirstpage | 173 |
dc.identifier.publicationissue | 1 |
dc.identifier.publicationlastpage | 184 |
dc.identifier.publicationtitle | Applied and Computational Harmonic Analysis |
dc.identifier.publicationvolume | 39 |
dc.identifier.uxxi | AR/0000016908 |
The following license files are associated with this item: