Sampling-related frames in finite U-invariant subspaces

e-Archivo Repository

Show simple item record García García, Antonio Muñoz-Bouzo, María José 2022-12-15T09:16:55Z 2022-12-15T09:16:55Z 2015-07-01
dc.identifier.bibliographicCitation García, A. G. & Muñoz-Bouzo, M. J. (2015). Sampling-related frames in finite U-invariant subspaces. Applied and Computational Harmonic Analysis, 39(1), 173-184.
dc.identifier.issn 1063-5203
dc.description.abstract Recently, a sampling theory for infinite dimensional U-invariant subspaces of a separable Hilbert space H where U denotes a unitary operator on H has been obtained. Thus, uniform average sampling for shift-invariant subspaces of L-2(R) becomes a particular example. As in the general case it is possible to have finite dimensional U-invariant subspaces, the main aim of this paper is to derive a sampling theory for finite dimensional U-invariant subspaces of a separable Hilbert space H. Since the used samples are frame coefficients in a suitable euclidean space C-N, the problem reduces to obtain dual frames with a U-invariance property.
dc.format.extent 12
dc.language.iso eng
dc.publisher Elsevier
dc.rights © 2014 Elsevier Inc. All rights reserved
dc.rights Atribución-NoComercial-SinDerivadas 3.0 España
dc.subject.other Stationary sequences
dc.subject.other U-invariant subspaces
dc.subject.other Finite frame
dc.subject.other Dual frames
dc.subject.other Moore-Penrose pseudo-inverse
dc.title Sampling-related frames in finite U-invariant subspaces
dc.type article
dc.subject.eciencia Informática
dc.rights.accessRights openAccess
dc.type.version acceptedVersion
dc.identifier.publicationfirstpage 173
dc.identifier.publicationissue 1
dc.identifier.publicationlastpage 184
dc.identifier.publicationtitle Applied and Computational Harmonic Analysis
dc.identifier.publicationvolume 39
dc.identifier.uxxi AR/0000016908
 Find Full text

Files in this item

*Click on file's image for preview. (Embargoed files's preview is not supported)

The following license files are associated with this item:

This item appears in the following Collection(s)

Show simple item record