Citation:
Salas, J. & Sokal, A. D. (2022). Ergodicity of the Wang–Swendsen–Kotecký algorithm on several classes of lattices on the torus. Journal of Physics A: Mathematical and Theoretical, 55(41), 415004.
DOI:
10.1088/1751-8121/ac92ae
xmlui.dri2xhtml.METS-1.0.item-contributor-funder:
Comunidad de Madrid Ministerio de Economía y Competitividad (España) Agencia Estatal de Investigación (España) Universidad Carlos III de Madrid
Sponsor:
We warmly thank Jesper Jacobsen and Bojan Mohar for a careful reading of early drafts of the manuscript, and correspondence. The authors research was supported in part by the Spanish Ministerio de Economía, Industria y Competitividad (MINECO), Agencia Estatal de Investigación (AEI), and Fondo Europeo de Desarrollo Regional (FEDER) through Grant No. FIS2017-84440-C2-2-P, by Grant No. PID2020-116567GBC22 AEI/10.13039/501100011033, by the Madrid Government (Comunidad de Madrid-Spain) under the Multiannual Agreement with UC3M in the line of Excellence of University Professors (EPUC3M23), and in the context of the V PRICIT (Regional Programme of Research and Technological Innovation), and by UK Engineering and Physical Sciences Research Council Grant EP/N025636/1.
Project:
Gobierno de España. FIS2017-84440-C2-2- Gobierno de España. PID2020-116567GBC22 AEI/10.13039/501100011033 Universidad Carlos III de Madrid. EPUC3M23 Comunidad de Madrid. V PRICIT
We prove the ergodicity of the Wang-Swendsen-Kotecký (WSK) algorithm for the zero-temperature q-state Potts antiferromagnet on several classes of lattices on the torus. In particular, the WSK algorithm is ergodic for q 4 on any quadrangulation of the torus ofWe prove the ergodicity of the Wang-Swendsen-Kotecký (WSK) algorithm for the zero-temperature q-state Potts antiferromagnet on several classes of lattices on the torus. In particular, the WSK algorithm is ergodic for q 4 on any quadrangulation of the torus of girth 4. It is also ergodic for q 5 (resp. q 3) on any Eulerian triangulation of the torus such that one sublattice consists of degree-4 vertices while the other two sublattices induce a quadrangulation of girth 4 (resp. a bipartite quadrangulation) of the torus. These classes include many lattices of interest in statistical mechanics.[+][-]