dc.contributor.author | Álvarez Caudevilla, Pablo![]() |
dc.contributor.author | Colorado Heras, Eduardo![]() |
dc.contributor.author | Galaktionov, Victor A. |
dc.date.accessioned | 2022-10-13T11:15:56Z |
dc.date.available | 2022-10-13T11:15:56Z |
dc.date.issued | 2015-06-01 |
dc.identifier.bibliographicCitation | Nonlinear Analysis: Real World Applications, (2015), v. 23, pp.: 78-93. |
dc.identifier.issn | 1468-1218 |
dc.identifier.uri | http://hdl.handle.net/10016/35878 |
dc.description.abstract | We obtain existence and multiplicity results for the solutions of a class of coupled semilinear bi-harmonic Schrodinger equations. Actually, using the classical Mountain Pass Theorem and minimization techniques, we prove the existence of critical points of the associated functional constrained on the Nehari manifold. Furthermore, we show that using the so-called fibering method and the Lusternik-Schnirerman theory there exist infinitely many solutions, actually a countable family of critical points, for such a semilinear bi-harmonic Schrodinger system under study in this work. |
dc.description.sponsorship | The authors like to thank the anonymous Referee by his valuable suggestions, helpful comments which further improved the content and presentation of the paper. The first and third authors have been partially supported by the Ministry of Economy and Competitiveness of Spain under research project MTM2012-33258. The second author has been partially supported by the Ministry of Economy and Competitiveness of Spain and FEDER funds under research project MTM2013-44123-P. |
dc.format.extent | 15 |
dc.language.iso | eng |
dc.publisher | Elsevier |
dc.rights | © 2014 Elsevier Ltd. All rights reserved. |
dc.rights | Atribución-NoComercial-SinDerivadas 3.0 España |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ |
dc.subject.other | Nonlinear bi-harmonic Schrodinger equations |
dc.subject.other | Standing waves |
dc.subject.other | Critical point theory |
dc.title | Existence of solutions for a system of coupled nonlinear stationary bi-harmonic Schrodinger equations |
dc.type | article |
dc.description.status | Publicado |
dc.subject.eciencia | Matemáticas |
dc.identifier.doi | https://doi.org/10.1016/j.nonrwa.2014.11.009 |
dc.rights.accessRights | openAccess |
dc.relation.projectID | Gobierno de España. MTM2012-33258 |
dc.relation.projectID | Gobierno de España. MTM2013-44123-P |
dc.type.version | acceptedVersion |
dc.identifier.publicationfirstpage | 78 |
dc.identifier.publicationlastpage | 93 |
dc.identifier.publicationtitle | NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS |
dc.identifier.publicationvolume | 23 |
dc.identifier.uxxi | AR/0000014627 |
dc.contributor.funder | Ministerio de Economía y Competitividad (España) |
dc.affiliation.dpto | UC3M. Departamento de Matemáticas |
The following license files are associated with this item: