On the flow separation mechanism in the inverse Leidenfrost regime

e-Archivo Repository

Show simple item record

dc.contributor.author Arrieta Sanagustín, Jorge
dc.contributor.author Sevilla Santiago, Alejandro
dc.date.accessioned 2022-09-23T08:52:13Z
dc.date.available 2022-09-23T08:52:13Z
dc.date.issued 2020-08-25
dc.identifier.bibliographicCitation Arrieta, J. & Sevilla, A. (2020, 9 junio). On the flow separation mechanism in the inverse Leidenfrost regime. Journal of Fluid Mechanics, 897.
dc.identifier.issn 0022-1120
dc.identifier.uri http://hdl.handle.net/10016/35773
dc.description.abstract The inverse Leidenfrost regime occurs when a heated object in relative motion with a liquid is surrounded by a stable vapour layer, drastically reducing the hydrodynamic drag at large Reynolds numbers due to a delayed separation of the flow. To elucidate the physical mechanisms that control separation, here we report a numerical study of the boundary layer equations describing the liquid vapour flow around a solid sphere whose surface temperature is above the Leidenfrost point. Our analysis reveals that the dynamics of the thin layer of vaporised liquid controls the downstream evolution of the flow, which cannot be properly described substituting the vapour layer by an effective slip length. In particular, the dominant mechanism responsible for the separation of the flow is the onset of vapour recirculation caused by the adverse pressure gradient in the rearward half of the sphere, leading to an explosive growth of the vapour-layer thickness due to the accumulation of vapour mass. Buoyancy forces are shown to have an important effect on the onset of recirculation, and thus on the separation angle. Our results compare favourably with previous experiments.
dc.description.sponsorship J.A. thanks the Govern de les Illes Balears for financial support through the Vicenç Mut subprogram partially financed by the European Social Fund, and the Spanish MCINN for support through grants FIS2016-77692-C2-1-P and CTM-2017-83774-D. A.S. thanks the Spanish MINECO for financial support through projects DPI2015-71901-REDT and DPI2017-88201-C3-3-R, partly financed through European funds. The authors acknowledge helpful comments and suggestions by Professor N. Riley and Professor E. Fernández-Tarrazo. J.A. acknowledges insightful discussions with Dr I. Tuval. The detailed and constructive comments of an anonymous reviewer, which have contributed to improve the present work, are gratefully acknowledged.
dc.format.extent 18
dc.language.iso eng
dc.publisher Cambridge University Press
dc.rights © The Author(s), 2020.
dc.rights Atribución-NoComercial-SinDerivadas 3.0 España
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subject.other Boundary layer structure
dc.subject.other Multiphase flow
dc.subject.other Condensation/evaporation
dc.title On the flow separation mechanism in the inverse Leidenfrost regime
dc.type article
dc.subject.eciencia Ingeniería Industrial
dc.identifier.doi 10.1017/jfm.2020.380
dc.rights.accessRights openAccess
dc.relation.projectID Gobierno de España. DPI2017-88201-C3-3-R
dc.relation.projectID Gobierno de España. FIS2016-77692-C2-1-P
dc.relation.projectID Gobierno de España. CTM-2017-83774-D
dc.relation.projectID Gobierno de España. DPI2015-71901-REDT
dc.type.version acceptedVersion
dc.identifier.publicationfirstpage 1
dc.identifier.publicationlastpage 18
dc.identifier.publicationtitle Journal of fluid mechanics
dc.identifier.publicationvolume 897
dc.identifier.uxxi AR/0000029653
dc.contributor.funder Ministerio de Economía y Competitividad (España)
dc.contributor.funder Ministerio de Ciencia e Innovación (España)
 Find Full text

Files in this item

*Click on file's image for preview. (Embargoed files's preview is not supported)

The following license files are associated with this item:

This item appears in the following Collection(s)

Show simple item record