MOVPE growth of GaP/GaPN core-shell nanowires: N incorporation, morphology and crystal structure
Publisher:
Nanotechnology
Issued date:
2019-07-26
Citation:
Steidl, M., Schwarzburg, K., Galiana, B., Kups, T., Supplie, O., Kleinschmidt, P., Lilienkamp, G., & Hannappel, T. (2019). MOVPE growth of GaP/GaPN core–shell nanowires: N incorporation, morphology and crystal structure. In Nanotechnology, 30(10), 104002-104010.
ISSN:
0957-4484
Sponsor:
This work was supported by the Deutsche Forschungsgemeinschaft (DFG, proj. no. HA 3096/4-2 & DA 396/6-2). We thank D Roßberg and D Flock for preparation of the TEM lamellae via FIB, as well as A Müller for technical support of the MOVPE system and W Dziony for AES measurements. We appreciate fruitful discussions with A Paszuk and A Nägelein.
Keywords:
Iii-V on silicon
,
Nanowires
,
Dilute nitride
,
Movpe
,
Facet formation
,
Optical spectroscopy
,
Liquid-solid growth
,
Core/shell nanowires
,
Band-gap
,
Nitrogen
,
Photoluminescence
,
Scattering
,
Evolution
,
Alloys
,
Energy
Rights:
© 2019 IOP Publishing Ltd
Atribución-NoComercial-SinDerivadas 3.0 España
Abstract:
Dilute nitride III-V nanowires (NWs) possess great potential as building blocks in future optoelectronical and electrochemical devices. Here, we provide evidence for the growth of GaP/GaPN core-shell NWs via metalorganic vapor phase epitaxy, both on GaP(111)B
Dilute nitride III-V nanowires (NWs) possess great potential as building blocks in future optoelectronical and electrochemical devices. Here, we provide evidence for the growth of GaP/GaPN core-shell NWs via metalorganic vapor phase epitaxy, both on GaP(111)B and on GaP/Si (111) hetero-substrates. The NW morphology meets the common needs for use in applications, i.e. they are straight and vertically oriented to the substrate as well as homogeneous in length. Moreover, no parasitical island growth is observed. Nitrogen was found to be incorporated on group V sites as determined from transmission electron microscopy (TEM) and Raman spectroscopy. Together with the incorporation of N, the NWs exhibit strong photoluminescence in the visible range, which we attribute to radiative recombination at N-related deep states. Independently of the N incorporation, a peculiar facet formation was found, with {110} facets at the top and {112} at the bottom of the NWs. TEM reveals that this phenomenon is related to different stacking fault densities within the zinc blende structure, which lead to different effective surface energies for the bottom and the top of the NWs.
[+]
[-]
Show full item record
Impact: