dc.contributor.author | López del Moral Hernández, David![]() |
dc.contributor.author | Barrado Bautista, Andrés![]() |
dc.contributor.author | Sanz García, Clara Marina![]() |
dc.contributor.author | Lázaro Blanco, Antonio![]() |
dc.contributor.author | Fernández Herrero, Cristina![]() |
dc.contributor.author | Zumel Vaquero, Pablo![]() |
dc.date.accessioned | 2022-08-03T11:06:54Z |
dc.date.available | 2022-08-03T11:06:54Z |
dc.date.issued | 2019-12 |
dc.identifier.bibliographicCitation | López del Moral, D., et al. Analysis and implementation of the Autotransformer Forward-Flyback converter applied to photovoltaic systems . In: Solar energy, vol. 194, Dec. 2019, Pp. 995-1012. |
dc.identifier.issn | 0038-092X |
dc.identifier.issn | 1471-1257 (online) |
dc.identifier.uri | http://hdl.handle.net/10016/35573 |
dc.description.abstract | The Distributed Maximum Power Point Tracking (DMPPT) architecture is employed to overcome the mismatching phenomena in grid-tied photovoltaic (PV) installations. In this kind of architecture, a DC-DC module integrated converter (MIC) manages each PV panel. Thanks to the DC-DC converters, the differences between PV panels do not influence others, maximizing the amount of harvested power. The MIC requirements to make this kind of solutions profitable are voltage step-down and step-up capability, low cost and high efficiency. This paper analyses the Autotransformer Forward-Flyback (AFF) converter. This converter is considered as a MIC candidate for fulfilling the requirements above. The study of the AFF converter includes the steady-state analysis and the small signal analysis in continuous conduction mode. The advantages of the AFF converter are the capability of voltage step-down and step-up; the simplicity since it only includes a single controlled switch; the use of an autotransformer; good dynamic performances and the soft switching characteristics in all the diodes. The paper includes a detailed AFF converter step-by-step design procedure, applied to 100 kW grid-tied PV installation, in which the effect of shadows has been considered. A 225 W AFF converter prototype validates the theoretical analyses, achieving an efficiency up to 94.5%. |
dc.description.sponsorship | This work has been supported by the Ministry of Economy and Competitiveness and FEDER funds through the research project "Storage and Energy Management for Hybrid Electric Vehicles based on Fuel Cell, Battery and Supercapacitors" - ELECTRICAR-AG- (DPI2014-53685-C2-1-R) |
dc.format.extent | 18 |
dc.language.iso | eng |
dc.publisher | Elsevier Ltd. |
dc.rights | © 2019 International Solar Energy Society. Published by Elsevier Ltd. All rights reserved. |
dc.rights | This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. |
dc.rights | Atribución-NoComercial-SinDerivadas 3.0 España |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ |
dc.subject.other | Autotransformer |
dc.subject.other | DC/DC converter |
dc.subject.other | DMPPT |
dc.subject.other | Efficiency |
dc.subject.other | Module integrated converters |
dc.subject.other | Photovoltaic |
dc.title | Analysis and implementation of the autotransformer forward-flyback converter applied to photovoltaic systems |
dc.type | article |
dc.subject.eciencia | Electrónica |
dc.identifier.doi | https://doi.org/10.1016/j.solener.2019.10.082 |
dc.rights.accessRights | openAccess |
dc.relation.projectID | Gobierno de España. DPI2014-53685-C2-1-R/ELECTRICAR |
dc.type.version | acceptedVersion |
dc.identifier.publicationfirstpage | 995 |
dc.identifier.publicationlastpage | 1012 |
dc.identifier.publicationtitle | SOLAR ENERGY |
dc.identifier.publicationvolume | 194 |
dc.identifier.uxxi | AR/0000024357 |
dc.contributor.funder | Ministerio de Economía y Competitividad (España) |
dc.affiliation.dpto | UC3M. Departamento de Tecnología Electrónica |
dc.affiliation.grupoinv | UC3M. Grupo de Investigación: Sistemas Electrónicos de Potencia (GSEP) |
The following license files are associated with this item: