dc.contributor.author |
López del Moral Hernández, David
|
dc.contributor.author |
Barrado Bautista, Andrés
|
dc.contributor.author |
Sanz García, Clara Marina
|
dc.contributor.author |
Lázaro Blanco, Antonio
|
dc.contributor.author |
Zumel Vaquero, Pablo
|
dc.date.accessioned |
2022-07-27T09:44:21Z |
dc.date.available |
2022-07-27T09:44:21Z |
dc.date.issued |
2021-02 |
dc.identifier.bibliographicCitation |
Lopez del Moral, D., Barrado, A., Sanz, M., Lazaro, A., & Zumel, P. (2021). Analysis, Design, and Implementation of the AFZ Converter Applied to Photovoltaic Systems. In IEEE Transactions on Power Electronics, 36(2), 1883-1900 |
dc.identifier.issn |
0885-8993 |
dc.identifier.uri |
http://hdl.handle.net/10016/35533 |
dc.description.abstract |
Grid-tied photovoltaic (PV) installations with Distributed Maximum Power Point Tracking (DMPPT) architectures
include a DC-DC Module Integrated Converter (MIC) for managing each PV panel, isolating it from the others, reducing the mismatching
effect and maximizing the harvested power. In this paper, the Autotransformer Forward converter with type-Zeta resonant reset (AFZ)
is proposed as a DMPPT architecture’s MIC candidate. The main characteristics of the AFZ converter are the high versatility due to its
voltage step-up and step-down capability; the use of an optimized autotransformer with only two windings, reducing the complexity and
power losses of this component; the good dynamic performances, like the Forward converter ones; the low number of components and
the simplicity and high feasibility associated to the use of just one active switch. Besides, soft switching transitions are achieved thanks to
the autotransformer type-Zeta resonant reset. The steady-state theoretical analysis, considering the effect of the autotransformer leakage
inductance, is presented. The converter is also studied in the frequency domain, obtaining the small-signal transfer functions. A design
procedure based on the requirements of a 100 kW grid-tied photovoltaic installation is described, yielding in a 225 W prototype with
efficiencies up to 95.6 %. Experimental results validate the theoretical analysis. |
dc.description.sponsorship |
This work was supported in part by the Spanish
Ministry of Economy and Competitiveness and FEDER funds through the
research project “Storage and Energy Management for Hybrid Electric Vehicles
based on Fuel Cell, Battery and Supercapacitors” ELECTRICAR-AG under
Grant DPI2014-53685-C2-1-R, in part by the research project CONEXPOT
under Grant DPI2017-84572-C2-2-R, and in part by the research project EPIIOT
under Grant DPI2017-88062-R. |
dc.format.extent |
17 |
dc.language.iso |
eng |
dc.publisher |
Institute of Electrical and Electronics Engineers (IEEE) |
dc.rights |
© 2020 IEEE |
dc.subject.other |
Microwave integrated circuits |
dc.subject.other |
Magnetic resonance |
dc.subject.other |
Switches |
dc.subject.other |
Inductance |
dc.subject.other |
Topology |
dc.subject.other |
Capacitors |
dc.subject.other |
Power electronics |
dc.title |
Analysis, design, and implementation of the AFZ converter applied to photovoltaic systems |
dc.type |
article |
dc.subject.eciencia |
Ingeniería Mecánica |
dc.identifier.doi |
https://doi.org/10.1109/TPEL.2020.3010152 |
dc.rights.accessRights |
openAccess |
dc.relation.projectID |
Gobierno de España. DPI2014-53685-C2-1-R |
dc.relation.projectID |
Gobierno de España. DPI2017-84572-C2-2-R |
dc.relation.projectID |
Gobierno de España. DPI2017-88062-R |
dc.type.version |
acceptedVersion |
dc.identifier.publicationfirstpage |
1883 |
dc.identifier.publicationissue |
2 |
dc.identifier.publicationlastpage |
1900 |
dc.identifier.publicationtitle |
IEEE TRANSACTIONS ON POWER ELECTRONICS |
dc.identifier.publicationvolume |
36 |
dc.identifier.uxxi |
AR/0000027208 |
dc.contributor.funder |
Ministerio de Economía y Competitividad (España) |
dc.affiliation.dpto |
UC3M. Departamento de Tecnología Electrónica |
dc.affiliation.grupoinv |
UC3M. Grupo de Investigación: Sistemas Electrónicos de Potencia (GSEP) |