Publisher:
Springer Science and Business Media LLC
Issued date:
2021-06-26
Citation:
Martínez-Pérez, Á., & Rodríguez, J. M. (2021). A note on isoperimetric inequalities of Gromov hyperbolic manifolds and graphs. In Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas (Vol. 115, Issue 3). Springer Science and Business Media LLC.
xmlui.dri2xhtml.METS-1.0.item-contributor-funder:
Comunidad de Madrid Ministerio de Economía y Competitividad (España) Universidad Carlos III de Madrid
Sponsor:
First author supported in part by a Grant from Ministerio de Ciencia, Innovación y Universidades
(PGC2018-098321-B-I00), Spain. Second author supported in part by two Grants from Ministerio de
Economía y Competitividad, Agencia Estatal de Investigación (AEI) and Fondo Europeo de Desarrollo
Regional (FEDER) (MTM2016-78227-C2-1-P and MTM2017-90584-REDT), Spain. Also, the research of
the second author was supported by the Madrid Government (Comunidad de Madrid-Spain) under the
Multiannual Agreement with UC3M in the line of Excellence of University Professors (EPUC3M23), and in
the context of the V PRICIT (Regional Programme of Research and Technological Innovation).
Project:
Gobierno de España. MTM2016-78227-C2-1-P Comunidad de Madrid. Gobierno de España. PGC2018-098321-B-I00 Gobierno de España. MTM2017-90584-REDT
Keywords:
Cheeger Isoperimetric Constant
,
Gromov Hyperbolicity
,
Bounded Local Geometry
,
Pole
We study in this paper the relationship of isoperimetric inequality and hyperbolicity for
graphs and Riemannian manifolds. We obtain a characterization of graphs and Riemannian
manifolds (with bounded local geometry) satisfying the (Cheeger) isoperimetric inWe study in this paper the relationship of isoperimetric inequality and hyperbolicity for
graphs and Riemannian manifolds. We obtain a characterization of graphs and Riemannian
manifolds (with bounded local geometry) satisfying the (Cheeger) isoperimetric inequality, in
terms of their Gromov boundary, improving similar results from a previous work. In particular,
we prove that having a pole is a necessary condition to have isoperimetric inequality and,
therefore, it can be removed as hypothesis.[+][-]