Modeling the interplay between water capillary transport and species diffusion in gas diffusion layers of proton exchange fuel cells using a hybrid computational fluid dynamics formulation

e-Archivo Repository

Show simple item record

dc.contributor.author Zapardiel, Diego
dc.contributor.author García-Salaberri, Pablo A.
dc.date.accessioned 2022-06-22T08:29:04Z
dc.date.issued 2022-02-01
dc.identifier.bibliographicCitation Journal of Power Sources, (2022), v. 520, 230735.
dc.identifier.issn 0378-7753
dc.identifier.uri http://hdl.handle.net/10016/35220
dc.description.abstract Improved modeling of the membrane electrode assembly (MEA) and operation is essential to optimize proton exchange fuel cells (PEFCs). In this work, a hybrid model, which includes a pore network formulation to describe water capillary transport and a continuum formulation to describe gas diffusion, is presented. The model is validated with previous data of carbon-paper gas diffusion layers (GDL), including capillary pressure curve, relative effective diffusivity, , and saturation profile. The model adequately captures the increase of capillary pressure with compression, the nearly cubic dependency of on average saturation, , and the shape of the saturation profile in conditions dominated by capillary fingering (e.g., running PEFC at low temperature). Subsequently, an analysis is presented in terms of the area fraction of water at the inlet and the outlet of the GDL, and , respectively. The results show that gas diffusion is severely hindered when is exceedingly high (¿80%), a situation that can arise due to the bottleneck created by flooded interfacial gaps. Furthermore, it is found that increases with , reducing the GDL effective diffusivity. Overall, the work shows the importance of an appropriate design of MEA porous media and interfaces in PEFCs.
dc.description.sponsorship This work was supported by the projects PID2019-106740RB-I00 and EIN2020-112247 (Spanish Agencia Estatal de Investigación) and the project PEM4ENERGY-CM-UC3M funded by the call “Programa de apoyo a la realización de proyectos interdisciplinares de I+D para jóvenes investigadores de la Universidad Carlos III de Madrid 2019–2020, Spain ” under the frame of the “Convenio Plurianual Comunidad de Madrid-Universidad Carlos III de Madrid”. Mr. D. Zapardiel also acknowledges the support of the excellence scholarship from the Comunidad de Madrid.
dc.format.extent 14
dc.language.iso eng
dc.publisher Elsevier
dc.rights © 2021 Elsevier B.V. All rights reserved.
dc.rights Atribución-NoComercial-SinDerivadas 3.0 España
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subject.other Capillary transport
dc.subject.other Diffusive transport
dc.subject.other Gas diffusion layer
dc.subject.other Hybrid modeling
dc.subject.other Polymer electrolyte membrane fuel cells
dc.title Modeling the interplay between water capillary transport and species diffusion in gas diffusion layers of proton exchange fuel cells using a hybrid computational fluid dynamics formulation
dc.type article
dc.description.status Publicado
dc.subject.eciencia Ingeniería Industrial
dc.identifier.doi https://doi.org/10.1016/j.jpowsour.2021.230735
dc.rights.accessRights embargoedAccess
dc.relation.projectID Gobierno de España. PID2019-106740RB-I00
dc.relation.projectID Gobierno de España. EIN2020-112247
dc.type.version acceptedVersion
dc.identifier.publicationfirstpage 1
dc.identifier.publicationissue 230735
dc.identifier.publicationlastpage 14
dc.identifier.publicationtitle JOURNAL OF POWER SOURCES
dc.identifier.publicationvolume 520
dc.identifier.uxxi AR/0000029287
carlosiii.embargo.liftdate 2024-02-01
carlosiii.embargo.terms 2024-02-01
dc.contributor.funder Universidad Carlos III de Madrid
dc.contributor.funder Agencia Estatal de Investigación (España)
 Find Full text

Files in this item

*Click on file's image for preview. (Embargoed files's preview is not supported)


The following license files are associated with this item:

This item appears in the following Collection(s)

Show simple item record