dc.contributor.author |
Escanciano, Juan Carlos
|
dc.date.accessioned |
2022-06-13T15:40:14Z |
dc.date.available |
2022-06-13T15:40:14Z |
dc.date.issued |
2018-02-01 |
dc.identifier.bibliographicCitation |
Escanciano, J. C. (2017). A simple and robust estimator for linear regression models with strictly exogenous instruments. The Econometrics Journal, 21 (1), pp. 36-54. |
dc.identifier.issn |
1368-4221 |
dc.identifier.uri |
http://hdl.handle.net/10016/35094 |
dc.description.abstract |
In this paper, I investigate the estimation of linear regression models with strictly exogenous instruments under minimal identifying assumptions. I introduce a uniformly (in the data¿generating process) consistent estimator under nearly minimal identifying assumptions. The proposed estimator, called the integrated instrumental variables (IIV) estimator, is a simple weighted least¿squares estimator. It does not require the choice of a bandwidth or tuning parameter, or the selection of a finite set of instruments. Thus, the estimator is extremely simple to implement. Monte Carlo evidence supports the theoretical claims and suggests that the IIV estimator is a robust complement to optimal instrumental variables in finite samples. In an application with quarterly UK data, the IIV estimator estimates a positive and significant elasticity of intertemporal substitution and an equally sensible estimate for its reciprocal, in sharp contrast to instrumental variables methods that fail to identify these parameters. |
dc.language.iso |
eng |
dc.publisher |
Oxford University Press |
dc.rights |
© 2017 Royal Economic Society |
dc.subject.other |
Uniform identification |
dc.subject.other |
Instrumental variables |
dc.subject.other |
Weak instruments |
dc.subject.other |
Uniform inference |
dc.subject.other |
Intertemporal Elasticity Of Substitution |
dc.title |
A simple and robust estimator for linear regression models with strictly exogenous instruments |
dc.type |
article |
dc.subject.jel |
C13 |
dc.subject.jel |
C26 |
dc.subject.eciencia |
Economía |
dc.identifier.doi |
https://doi.org/10.1111/ectj.12087 |
dc.rights.accessRights |
openAccess |
dc.type.version |
acceptedVersion |
dc.identifier.publicationfirstpage |
36 |
dc.identifier.publicationissue |
1 |
dc.identifier.publicationlastpage |
54 |
dc.identifier.publicationtitle |
Econometrics Journal |
dc.identifier.publicationvolume |
21 |
dc.identifier.uxxi |
AR/0000029576 |