Predicting MHC I restricted T cell epitopes in mice with NAP-CNB, a novel online tool
Publisher:
Springer Science and Business Media LLC
Issued date:
2021-05-24
Citation:
Wert-Carvajal, C., Sánchez-García, R., Macías, J. R., Sanz-Pamplona, R., Pérez, A. M., Alemany, R., Veiga, E., Sorzano, C. Ó. S., & Muñoz-Barrutia, A. (2021). Predicting MHC I restricted T cell epitopes in mice with NAP-CNB, a novel online tool. In Scientific Reports (Vol. 11, Issue 1). Springer Science and Business Media LLC.
ISSN:
2045-2322
xmlui.dri2xhtml.METS-1.0.item-contributor-funder:
Ministerio de Economía y Competitividad (España)
Ministerio de Ciencia e Innovación (España)
Sponsor:
This work was funded by the Spanish Ministry of Economy, Industry and Competitiveness (TEC2016-28052-R,
RTC2017-6600-1, SAF2017-84091-R, BFERO2020.04), the Spanish Ministry of Science and Innovation
(FPU18/03199, PID2019-109820RB-I00), the “la Caixa” Foundation (LCF/BQ/EU19/11710071), FERO foundation
and Centro Superior de Investigaciones Científicas (JAEINT18/EX/0636).
Project:
Gobierno de España. PID2019-109820RB-I00
Gobierno de España. TEC2016-28052-R
Gobierno de España. RTC2017-6600-1
Gobierno de España. SAF2017-84091-R
Gobierno de España. BFERO2020.04
Gobierno de España. FPU18/03199
Rights:
© The Author(s) 2021
Atribución 3.0 España
Abstract:
Lack of a dedicated integrated pipeline for neoantigen discovery in mice hinders cancer
immunotherapy research. Novel sequential approaches through recurrent neural networks can
improve the accuracy of T-cell epitope binding affinity predictions in mice, and
Lack of a dedicated integrated pipeline for neoantigen discovery in mice hinders cancer
immunotherapy research. Novel sequential approaches through recurrent neural networks can
improve the accuracy of T-cell epitope binding affinity predictions in mice, and a simplified variant
selection process can reduce operational requirements. We have developed a web server tool (NAPCNB)
for a full and automatic pipeline based on recurrent neural networks, to predict putative
neoantigens from tumoral RNA sequencing reads. The developed software can estimate H-2 peptide
ligands, with an AUC comparable or superior to state-of-the-art methods, directly from tumor
samples. As a proof-of-concept, we used the B16 melanoma model to test the system’s predictive
capabilities, and we report its putative neoantigens. NAP-CNB web server is freely available at http://
bioco mp. cnb. csic. es/ Neoan tigen sApp/ with scripts and datasets accessible through the download
section.
[+]
[-]
Show full item record
Impact:
Files in this item
File's Preview
*Click on file's image for preview. (Embargoed files's preview is not supported)
This item appears in the following
Collection(s)