Citation:
Lobato, I. N., & Velasco, C. (2018). Efficiency improvements for minimum distance estimation of causal and invertible ARMA models. Economics Letters, 162, pp. 150-152.
xmlui.dri2xhtml.METS-1.0.item-contributor-funder:
Ministerio de Economía y Competitividad (España) Comunidad de Madrid
Sponsor:
Lobato acknowledges financial support from Asociación Mexicana de Cultura
and from the Mexican Consejo Nacional de Ciencia y Tecnología (CONACYT) under
project grant 151624. Velasco acknowledges financial support from the Ministerio
Economía y Competitividad (Spain), grants ECO2012-31748, ECO2014-57007p and
MDM 2014-0431, and Comunidad de Madrid, MadEco-CM (S2015/HUM-3444).
Project:
Gobierno de España. ECO2012-31748 Gobierno de España. ECO2014-57007p Gobierno de España. MDM 2014-0431 Comunidad de Madrid. S2015/HUM-3444
In this note we analyze efficiency improvements over the Gaussian maximum likelihood (ML) estimator for frequency domain minimum distance (MD) estimation for causal and invertible autoregressive moving average (ARMA) models. The analysis complements Velasco anIn this note we analyze efficiency improvements over the Gaussian maximum likelihood (ML) estimator for frequency domain minimum distance (MD) estimation for causal and invertible autoregressive moving average (ARMA) models. The analysis complements Velasco and Lobato (2017) where optimal MD estimation, which employs information in higher order moments, is studied for the general possibly non causal or non-invertible case. We consider MD estimation that combines in two manners the information contained in second, third, and fourth moments. We show that for both MD estimators efficiency improvements over the Gaussian ML occur when the distribution of the innovations is platykurtic. In addition, we show that asymmetry alone is not associated with efficiency improvements. (C) 2017 Elsevier B.V. All rights reserved.[+][-]