dc.contributor.author |
Almagro Fernández, Antonio Eduardo |
dc.contributor.author |
Flores Arias, Óscar
|
dc.contributor.author |
Vera Coello, Marcos
|
dc.contributor.author |
Liñán Martínez, Amable |
dc.contributor.author |
Sánchez Pérez, Antonio Luis |
dc.contributor.author |
Williams, Forman Arthur |
dc.date.accessioned |
2022-03-28T12:14:23Z |
dc.date.available |
2022-03-28T12:14:23Z |
dc.date.issued |
2019-01 |
dc.identifier.bibliographicCitation |
Proceedings of the Combustion Institute, 37(2), 2019, Pp. 1757-1766 |
dc.identifier.issn |
1540-7489 |
dc.identifier.issn |
1873-2704 (online) |
dc.identifier.uri |
http://hdl.handle.net/10016/34469 |
dc.description.abstract |
This numerical and analytical study investigates effects of differential diffusion on nonpremixed-flame temperatures. To focus more directly on transport effects the work considers a single irreversible reaction with an infinitely fast rate, with Schab-Zel'dovich coupling functions introduced to write the conservation equations of energy and reactants in a chemistry-free form accounting for non-unity values of the fuel Lewis number L-F. Different flow configurations of increasing complexity are analyzed, beginning with canonical flamelet models that are reducible to ordinary differential equations, for which the variation of the flame temperature with fuel-feed dilution and L-F is quantified, revealing larger departures from adiabatic values in dilute configurations with oxidizer-to-fuel stoichiometric ratios S of order unity. Marble's problem of an unsteady flame wrapped by a line vortex is considered next, with specific attention given to large-Peclet-number solutions. Unexpected effects of differential diffusion are encountered for S < 1 near the vortex core, including superadiabatic/subadibatic flame temperatures occurring for values of L-F larger/smaller than unity as well as temperature profiles peaking on the oxidizer side of the flame. Direct numerical simulations of diffusion flames in a temporal turbulent mixing layer are used to further investigate these unexpected differential- diffusion effects. The results, confirming and extending previous findings, underscore the nontrivial role of differential diffusion in nonpremixed-combustion systems. |
dc.format.extent |
10 |
dc.language.iso |
eng |
dc.publisher |
Elsevier Inc. |
dc.rights |
© 2018 The Combustion Institute. Published by Elsevier Inc. All rights reserved. |
dc.subject.other |
Diffusion flames |
dc.subject.other |
Differential diffusion |
dc.subject.other |
Vortex flames |
dc.subject.other |
Turbulent mixing layer |
dc.subject.other |
Turbulent |
dc.subject.other |
Extinction |
dc.title |
Effects of differential diffusion on nonpremixed-flame temperature |
dc.type |
article |
dc.subject.eciencia |
Biología y Biomedicina |
dc.subject.eciencia |
Ingeniería Industrial |
dc.subject.eciencia |
Ingeniería Mecánica |
dc.identifier.doi |
https://doi.org/10.1016/j.proci.2018.06.176 |
dc.rights.accessRights |
openAccess |
dc.type.version |
acceptedVersion |
dc.identifier.publicationfirstpage |
1757 |
dc.identifier.publicationissue |
2 |
dc.identifier.publicationlastpage |
1766 |
dc.identifier.publicationtitle |
PROCEEDINGS OF THE COMBUSTION INSTITUTE |
dc.identifier.publicationvolume |
37 |
dc.identifier.uxxi |
AR/0000023079 |
dc.affiliation.dpto |
UC3M. Departamento de Ingeniería Aeroespacial |
dc.affiliation.grupoinv |
UC3M. Grupo de Investigación: Ingeniería Aeroespacial |