Effects of differential diffusion on nonpremixed-flame temperature

e-Archivo Repository

Show simple item record

dc.contributor.author Almagro Fernández, Antonio Eduardo
dc.contributor.author Flores Arias, Óscar
dc.contributor.author Vera Coello, Marcos
dc.contributor.author Liñán Martínez, Amable
dc.contributor.author Sánchez Pérez, Antonio Luis
dc.contributor.author Williams, Forman Arthur
dc.date.accessioned 2022-03-28T12:14:23Z
dc.date.available 2022-03-28T12:14:23Z
dc.date.issued 2019-01
dc.identifier.bibliographicCitation Proceedings of the Combustion Institute, 37(2), 2019, Pp. 1757-1766
dc.identifier.issn 1540-7489
dc.identifier.issn 1873-2704 (online)
dc.identifier.uri http://hdl.handle.net/10016/34469
dc.description.abstract This numerical and analytical study investigates effects of differential diffusion on nonpremixed-flame temperatures. To focus more directly on transport effects the work considers a single irreversible reaction with an infinitely fast rate, with Schab-Zel'dovich coupling functions introduced to write the conservation equations of energy and reactants in a chemistry-free form accounting for non-unity values of the fuel Lewis number L-F. Different flow configurations of increasing complexity are analyzed, beginning with canonical flamelet models that are reducible to ordinary differential equations, for which the variation of the flame temperature with fuel-feed dilution and L-F is quantified, revealing larger departures from adiabatic values in dilute configurations with oxidizer-to-fuel stoichiometric ratios S of order unity. Marble&#39;s problem of an unsteady flame wrapped by a line vortex is considered next, with specific attention given to large-Peclet-number solutions. Unexpected effects of differential diffusion are encountered for S < 1 near the vortex core, including superadiabatic/subadibatic flame temperatures occurring for values of L-F larger/smaller than unity as well as temperature profiles peaking on the oxidizer side of the flame. Direct numerical simulations of diffusion flames in a temporal turbulent mixing layer are used to further investigate these unexpected differential- diffusion effects. The results, confirming and extending previous findings, underscore the nontrivial role of differential diffusion in nonpremixed-combustion systems.
dc.format.extent 10
dc.language.iso eng
dc.publisher Elsevier Inc.
dc.rights © 2018 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
dc.subject.other Diffusion flames
dc.subject.other Differential diffusion
dc.subject.other Vortex flames
dc.subject.other Turbulent mixing layer
dc.subject.other Turbulent
dc.subject.other Extinction
dc.title Effects of differential diffusion on nonpremixed-flame temperature
dc.type article
dc.subject.eciencia Biología y Biomedicina
dc.subject.eciencia Ingeniería Industrial
dc.subject.eciencia Ingeniería Mecánica
dc.identifier.doi https://doi.org/10.1016/j.proci.2018.06.176
dc.rights.accessRights openAccess
dc.type.version acceptedVersion
dc.identifier.publicationfirstpage 1757
dc.identifier.publicationissue 2
dc.identifier.publicationlastpage 1766
dc.identifier.publicationtitle PROCEEDINGS OF THE COMBUSTION INSTITUTE
dc.identifier.publicationvolume 37
dc.identifier.uxxi AR/0000023079
dc.affiliation.dpto UC3M. Departamento de Ingeniería Aeroespacial
dc.affiliation.grupoinv UC3M. Grupo de Investigación: Ingeniería Aeroespacial
 Find Full text

Files in this item

*Click on file's image for preview. (Embargoed files's preview is not supported)


This item appears in the following Collection(s)

Show simple item record