Effects of the diffusive mixing and self-discharge reactions in microfluidic membraneless vanadium redox flow batteries

e-Archivo Repository

Show simple item record

dc.contributor.author Ibañez, Santiago E.
dc.contributor.author Quintero, Alberto E.
dc.contributor.author García-Salaberri, Pablo A.
dc.contributor.author Vera Coello, Marcos
dc.date.accessioned 2022-02-22T12:13:38Z
dc.date.available 2022-02-22T12:13:38Z
dc.date.issued 2021-05
dc.identifier.bibliographicCitation Ibáñez, S. E., Quintero, A. E., García-Salaberri, P. A. & Vera, M. (2021). Effects of the diffusive mixing and self-discharge reactions in microfluidic membraneless vanadium redox flow batteries. International Journal of Heat and Mass Transfer, 170, 121022.
dc.identifier.issn 0017-9310
dc.identifier.uri http://hdl.handle.net/10016/34201
dc.description.abstract Microfluidic-based membraneless redox flow batteries have been recently proposed and tested with the aim of removing one of the most expensive and problematic components of the system, the ion-exchange membrane. In this promising design, the electrolytes are allowed to flow parallel to each other along microchannels, where they remain separated thanks to the laminar flow conditions prevailing at sub-millimeter scales, which prevent the convective mixing of both streams. The lack of membrane enhances proton transfer and simplifies overall system design at the expense of larger crossover rates of vanadium ions. The aim of this work is to provide estimates for the crossover rates induced by the combined action of active species diffusion and homogeneous self-discharge reactions. As the rate of these reactions is still uncertain, two limiting cases are addressed: infinitely slow (frozen chemistry) and infinitely fast (chemical equilibrium) reactions. These two limits provide lower and upper bounds for the crossover rates in microfluidic vanadium redox flow batteries, which can be conveniently expressed in terms of analytical or semi-analytical expressions. In summary, the analysis presented herein provides design guidelines to evaluate the capacity fade resulting from the combined effect of vanadium cross-over and self-discharge reactions in these emerging systems.
dc.description.sponsorship This work has been partially funded by the Agencia Estatal de Investigación (PID2019-106740RB-I00/AEI/10.13039/501100011033), by Grant IND2019/AMB-17273 of the Comunidad de Madrid and by project MFreeB which have received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (Grant Agreement No. 726217). S. E. Ibáñez gratefully acknowledges Dr. Rebeca Marcilla for its insightful discussions. P.A. García-Salaberri also acknowledges the support of the project PEM4ENERGY-CM-UC3M funded by the call "Programa de apoyo a la realización de proyectos interdisciplinares de I+D para jóvenes investigadores de la Universidad Carlos III de Madrid 2019-2020" under the frame of the "Convenio Plurianual Comunidad de Madrid-Universidad Carlos III de Madrid".
dc.format.extent 15
dc.language.iso eng
dc.publisher Elsevier
dc.rights © 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license.
dc.rights Atribución-NoComercial-SinDerivadas 3.0 España
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subject.other Vanadium redox flow battery
dc.subject.other Membraneless
dc.subject.other Crossover
dc.subject.other Self-discharge reactions
dc.subject.other Reaction fronts
dc.subject.other Capacity fade
dc.title Effects of the diffusive mixing and self-discharge reactions in microfluidic membraneless vanadium redox flow batteries
dc.type article
dc.subject.eciencia Ingeniería Industrial
dc.subject.eciencia Ingeniería Mecánica
dc.identifier.doi https://doi.org/10.1016/j.ijheatmasstransfer.2021.121022
dc.rights.accessRights openAccess
dc.relation.projectID Comunidad de Madrid. PEM4ENERGY-CM-UC3M
dc.relation.projectID Comunidad de Madrid. IND2019/AMB-17273
dc.relation.projectID Gobierno de España. PID2019-106740RB-I00
dc.relation.projectID info:eu-repo/grantAgreement/EC/726217
dc.type.version publishedVersion
dc.identifier.publicationfirstpage 121022-1
dc.identifier.publicationlastpage 121022-15
dc.identifier.publicationtitle International Journal of Heat and Mass Transfer
dc.identifier.publicationvolume 170
dc.identifier.uxxi AR/0000025995
dc.contributor.funder Comunidad de Madrid
dc.contributor.funder European Commission
dc.contributor.funder Ministerio de Ciencia, Innovación y Universidades (España)
dc.contributor.funder Universidad Carlos III de Madrid
 Find Full text

Files in this item

*Click on file's image for preview. (Embargoed files's preview is not supported)


The following license files are associated with this item:

This item appears in the following Collection(s)

Show simple item record