Analysis of representative elementary volume and through-plane regional characteristics of carbon-fiber papers: diffusivity, permeability and electrical/thermal conductivity
Publisher:
Elsevier
Issued date:
2018-12
Citation:
García-Salaberri, P. A., Zenyuk, I. V., Shum, A. D., Hwang, G., Vera, M., Weber, A. Z. & Gostick, J. T. (2018). Analysis of representative elementary volume and through-plane regional characteristics of carbon-fiber papers: diffusivity, permeability and electrical/thermal conductivity. International Journal of Heat and Mass Transfer, 127, 687–703.
ISSN:
0017-9310
xmlui.dri2xhtml.METS-1.0.item-contributor-funder:
Ministerio de Economía y Competitividad (España)
Sponsor:
The authors thank the support team of Calcul Quebec and Compute Canada for their help during the simulation campaign, as well as Dr. Dula Parkinson and Dr. Alastair MacDowell at the Advanced Light Source (ALS) for help in obtaining the tomographic images. This work was funded under the Fuel Cell Performance and Durability Consortium (FC-PAD), by the Fuel Cell Technologies Office (FCTO), Office of Energy Efficiency and Renewable Energy (EERE), of the U.S. Department of Energy under contract number DE-AC02-05CH11231, Project ENE2015-68703-C2-1-R (MINECO/FEDER, UE) and the research grant 'Ayudas a la Investigation en Energia y Medio Ambiente' awarded to the first author by the Spanish lberdrola Foundation. I.V. Zenyuk and A.D. Shum would like to acknowledge support from the National Science Foundation under CBET Award 1605159. X-ray tomography experiments were performed on beamline 8.3.2 at the ALS (Lawrence Berkeley National Laboratory), which is a national user facility funded by the Department of Energy, Office of Basic Energy Sciences under contract DE-ACO2-05CH11231. Numerical calculations were performed on the supercomputing clusters Briaree, Colosse, Guillimin and Mp2, managed by Calcul Quebec and Compute Canada. The operation of these supercomputers is funded by the Canada Foundation for Innovation (CFI), Ministere de l'Economie, de l'Innovation et des Exportations du Quebec (MEIE), RMGA and the Fonds de recherche du Quebec -Nature et technologies (FRQ-NT).
Project:
Gobierno de España. ENE2015-68703-C2-1-R
Keywords:
Carbon-fiber paper
,
Effective properties
,
Representative elementary volume
,
Modeling
,
X-ray tomography
,
Energy conversion and storage
Rights:
© 2018 Elsevier Ltd. All rights reserved.
Atribución-NoComercial-SinDerivadas 3.0 España
Abstract:
Understanding the transport processes that occur in carbon-fiber papers (CFPs) used in fuel cells, electrolyzers, and metal-air/redox flow batteries is necessary to help predict cell performance and durability, optimize materials and diagnose problems. The mos
Understanding the transport processes that occur in carbon-fiber papers (CFPs) used in fuel cells, electrolyzers, and metal-air/redox flow batteries is necessary to help predict cell performance and durability, optimize materials and diagnose problems. The most common technique used to model these thin, heterogeneous, anisotropic porous media is the volume-averaged approximation based on the existence of a representative elementary volume (REV). However, the applicability of the continuum hypothesis to these materials has been questioned many times, and the error incurred in the predictions is yet to be quantified. In this work, the existence of a REV in CFPs is assessed in terms of dry effective transport properties: mass diffusivity, permeability and electrical/thermal conductivity. Multiple sub-samples with different widths and thicknesses are examined by combining the lattice Boltzmann method with X-ray tomography images of four uncompressed CFPs. The results show that a meaningful length scale can be defined in the material plane in the order of 1–2 mm, which is comparable to the rib/channel width used in the aforementioned devices. As for the through-plane direction, no distinctive length scale smaller than the thickness can be identified due to the lack of a well-defined separation between pore and volume-averaged scales in these inherently thin heterogeneous materials. The results also show that the highly porous surface region (amounting up to 20% of the thickness) significantly reduces the through-plane electrical/thermal conductivity. Overall, good agreement is found with previous experimental data of virtually uncompressed CFPs when approximately the full thickness is considered.
[+]
[-]
Show full item record
Impact: