AI-driven, Context-Aware Profiling for 5G and Beyond Networks

e-Archivo Repository

Show simple item record

dc.contributor.author Koursioumpas, Nikolaos
dc.contributor.author Barmpounakis, Sokratis
dc.contributor.author Stavrakakis, Ioannis
dc.contributor.author Alonistioti, Nancy
dc.date.accessioned 2022-02-21T11:41:00Z
dc.date.available 2022-02-21T11:41:00Z
dc.date.issued 2021-11-15
dc.identifier.bibliographicCitation Koursioumpas, N., Barmpounakis, S., Stavrakakis, I. & Alonistioti, N. (2021). AI-driven, Context-Aware Profiling for 5G and Beyond Networks. IEEE Transactions on Network and Service Management, 1-12.
dc.identifier.issn 1932-4537 (Electronic)
dc.identifier.uri http://hdl.handle.net/10016/34179
dc.description.abstract In the era of Industrial Internet of Things (IIoT) and Industry 4.0, an immense volume of heterogeneous network devices will coexist and contend for shared network resources, in order to satisfy the very challenging IIoT applications, requiring ultra-reliable and ultra-low latency communications. Although novel key enablers, such as Network Slicing, Software Defined Networking (SDN) and Network Function Virtualization (NFV) have already offered significant advantages towards more efficient and flexible network and resource management approaches, the particular characteristics of IIoT applications pose additional burdens, mainly due to the complex wireless environments, high number of heterogeneous network devices, sensors, user equipments (UEs), etc., which may stochastically demand and contend for the -often scarce -computing and communication resources of industrial environments. To this end, this paper introduces PRIMATE, a novel, Artificial Intelligence (AI)-driven framework for the profiling of the networking behavior of such UEs, devices, users and things, which is able to operate in conjunction with already standardized or forthcoming, AI-based network resource management processes towards further gains. The novelty and potential of the proposed work lies on the fact that instead of attempting to either predict raw network metrics in a reactive manner, or predict the behavior of specific network entities/devices in an isolated manner, a big data-driven classification approach is introduced, which models the behavior of any network device/user from both a macroscopic, as well as service-specific perspective. The extended evaluation at the last part of this work shows the validity and viability of the proposed framework.
dc.description.sponsorship This work has been partially supported by EC H2020 5GPPP 5Growth project (Grant 856709).
dc.format.extent 12
dc.language.iso eng
dc.publisher IEEE
dc.rights © 2021 IEEE.
dc.subject.other Context-aware profiling
dc.subject.other Machine learning
dc.subject.other AI-driven networking
dc.subject.other 5G
dc.subject.other Resource allocation
dc.title AI-driven, Context-Aware Profiling for 5G and Beyond Networks
dc.type article
dc.subject.eciencia Telecomunicaciones
dc.identifier.doi https://doi.org/10.1109/TNSM.2021.3126948
dc.rights.accessRights openAccess
dc.relation.projectID info:eu-repo/grantAgreement/EC/856709
dc.type.version acceptedVersion
dc.identifier.publicationfirstpage 1
dc.identifier.publicationissue 00
dc.identifier.publicationlastpage 12
dc.identifier.publicationtitle IEEE Transactions on Network and Service Management
dc.identifier.publicationvolume 00
dc.contributor.funder European Commission
 Find Full text

Files in this item

*Click on file's image for preview. (Embargoed files's preview is not supported)


This item appears in the following Collection(s)

Show simple item record