Deep-learning-based segmentation of small extracellular vesicles in transmission electron microscopy images
Publisher:
Nature Research
Issued date:
2019-09-13
Citation:
Gómez-de-Mariscal, E., Maška, M., Kotrbová, A., Pospíchalová, V., Matula, P. & Muñoz-Barrutia, A. (2019). Deep-Learning-Based Segmentation of Small Extracellular Vesicles in Transmission Electron Microscopy Images. Scientific Reports, 9: 13211.
ISSN:
2045-2322
xmlui.dri2xhtml.METS-1.0.item-contributor-funder:
Ministerio de Economía y Competitividad (España)
Sponsor:
We want to acknowledge the support of NVIDIA Corporation with the donation of the Titan X (Pascal) GPU used for this research. This work was supported by the Spanish Ministry of Economy and Competitiveness (TEC2013-48552-C2-1-R, TEC2015-73064-EXP, TEC2016-78052-R) (EGM-AMB), a 2017 Leonardo Grant for Researchers and Cultural Creators, BBVA Foundation (EGM-AMB), and the Czech Science Foundation (GA17-05048S)(MM-PM) and (GJ17-11776Y) (AK-VP).
Project:
Gobierno de España. TEC2013-48552-C2-1-R
Gobierno de España. TEC2016-78052-R
Gobierno de España. TEC2015-73064-EXP
Rights:
© The Author(s) 2019. This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-ative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not per-mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
Atribución 3.0 España
Abstract:
Small extracellular vesicles (sEVs) are cell-derived vesicles of nanoscale size (~30-200 nm) that function as conveyors of information between cells, reflecting the cell of their origin and its physiological condition in their content. Valuable information on
Small extracellular vesicles (sEVs) are cell-derived vesicles of nanoscale size (~30-200 nm) that function as conveyors of information between cells, reflecting the cell of their origin and its physiological condition in their content. Valuable information on the shape and even on the composition of individual sEVs can be recorded using transmission electron microscopy (TEM). Unfortunately, sample preparation for TEM image acquisition is a complex procedure, which often leads to noisy images and renders automatic quantification of sEVs an extremely difficult task. We present a completely deep-learning-based pipeline for the segmentation of sEVs in TEM images. Our method applies a residual convolutional neural network to obtain fine masks and use the Radon transform for splitting clustered sEVs. Using three manually annotated datasets that cover a natural variability typical for sEV studies, we show that the proposed method outperforms two different state-of-the-art approaches in terms of detection and segmentation performance. Furthermore, the diameter and roundness of the segmented vesicles are estimated with an error of less than 10%, which supports the high potential of our method in biological applications.
[+]
[-]
Show full item record
Impact:
Files in this item
File's Preview
*Click on file's image for preview. (Embargoed files's preview is not supported)
This item appears in the following
Collection(s)