Citation:
Yang, D., Martinez, C., Visuña, L., Khandhar, H., Bhatt, C. & Carretero, J. (2021). Detection and analysis of COVID-19 in medical images using deep learning techniques. Scientific Reports, 11, 19638.
xmlui.dri2xhtml.METS-1.0.item-contributor-funder:
European Commission
Sponsor:
The research leading to these results received funding from the Innovative Medicines Innitiative 2 Joint Undertaking (JU) under grant agreement No 853989. The JU receives support from the European Union's Horizon 2020 research and innovation programme and EFPIA and Global Alliance for TB Drug Development non profit organisation, Bill & Melinda Gates Foundation and University of Dundee.
The main purpose of this work is to investigate and compare several deep learning enhanced techniques applied to X-ray and CT-scan medical images for the detection of COVID-19. In this paper, we used four powerful pre-trained CNN models, VGG16, DenseNet121, ReThe main purpose of this work is to investigate and compare several deep learning enhanced techniques applied to X-ray and CT-scan medical images for the detection of COVID-19. In this paper, we used four powerful pre-trained CNN models, VGG16, DenseNet121, ResNet50,and ResNet152, for the COVID-19 CT-scan binary classification task. The proposed Fast.AI ResNet framework was designed to find out the best architecture, pre-processing, and training parameters for the models largely automatically. The accuracy and F1-score were both above 96% in the diagnosis of COVID-19 using CT-scan images. In addition, we applied transfer learning techniques to overcome the insufficient data and to improve the training time. The binary and multi-class classification of X-ray images tasks were performed by utilizing enhanced VGG16 deep transfer learning architecture. High accuracy of 99% was achieved by enhanced VGG16 in the detection of X-ray images from COVID-19 and pneumonia. The accuracy and validity of the algorithms were assessed on X-ray and CT-scan well-known public datasets. The proposed methods have better results for COVID-19 diagnosis than other related in literature. In our opinion, our work can help virologists and radiologists to make a better and faster diagnosis in the struggle against the outbreak of COVID-19.[+][-]