Fingering instability in spreading epithelial monolayers: roles of cell polarisation, substrate friction and contractile stresses

e-Archivo Repository

Show simple item record

dc.contributor.author Trenado Yuste, Carolina
dc.contributor.author López Bonilla, Luis Francisco
dc.contributor.author Martínez Calvo, Alejandro
dc.date.accessioned 2021-10-06T11:01:14Z
dc.date.available 2022-09-28T23:00:05Z
dc.date.issued 2021-09-28
dc.identifier.bibliographicCitation Trenado, C., Bonilla, L. L. & Martínez-Calvo, A. (2021). Fingering instability in spreading epithelial monolayers: roles of cell polarisation, substrate friction and contractile stresses. Soft Matter, 17(36), pp. 8276–8290.
dc.identifier.issn 1744-683X
dc.identifier.uri http://hdl.handle.net/10016/33376
dc.description.abstract Collective cell migration plays a crucial role in many developmental processes that underlie morphogenesis, wound healing, or cancer progression. In such coordinated behaviours, cells are organised in coherent structures and actively migrate to serve different biological purposes. In some contexts, namely during epithelial wound healing, it is well known that a migrating free-edge monolayer develops finger-like instabilities, yet the onset is still under debate. Here, by means of theory and numerical simulations, we shed light on the main mechanisms driving the instability process, analysing the linear and nonlinear dynamics of a continuum compressible polar fluid. In particular, we assess the role of cell polarisation, substrate friction, and contractile stresses. Linear theory shows that it is crucial to analyse the perturbation transient dynamics, since we unravel a plethora of crossovers between different exponential growth rates during the linear regime. Numerical simulations suggest that cell–substrate friction could be the mechanism responsible for the formation of complex finger-like structures at the edge, since it triggers secondary fingering instabilities and tip-splitting phenomena. Finally, we obtain a critical contractile stress that depends on cell–substrate friction and the initial-to-nematic length ratio, characterising an active wetting-dewetting transition. In the dewetting scenario, the monolayer retracts and becomes stable without developing finger-like structures.
dc.description.sponsorship CT and LLB acknowledge financial support by the FEDER/Ministerio de Ciencia, Innovación y Universidades - Agencia Estatal de Investigación grant MTM2017-84446-C2-2-R, by the Madrid Government (Comunidad de Madrid-Spain) under the Multiannual Agreement with UC3M in the line of Excellence of University Professors (EPUC3M23), and in the context of the V PRICIT (Regional Programme of Research and Technological Innovation). AM-C acknowledges support from the Human Frontier Science Program (LT000035/2021-C), and from the FEDER/Ministerio de Ciencia, Innovación y Universidades - Agencia Estatal de Investigación through the project DPI2017-88201-C3-3-R, and the Red Nacional para el Desarrollo de la Microfluídica, RED2018-102829-T. The authors warmly acknowledge Ricard Alert-Zenón for useful comments and insightful advice.
dc.format.extent 15
dc.language.iso eng
dc.publisher Royal Society of Chemistry
dc.title Fingering instability in spreading epithelial monolayers: roles of cell polarisation, substrate friction and contractile stresses
dc.type article
dc.subject.eciencia Matemáticas
dc.subject.eciencia Química
dc.identifier.doi https://doi.org/10.1039/D1SM00626F
dc.rights.accessRights openAccess
dc.relation.projectID Gobierno de España. MTM2017-84446-C2-2-R
dc.relation.projectID Comunidad de Madrid. EPUC3M23
dc.relation.projectID Gobierno de España. DPI2017-88201-C3-3-R
dc.type.version acceptedVersion
dc.identifier.publicationfirstpage 8276
dc.identifier.publicationissue 36
dc.identifier.publicationlastpage 8290
dc.identifier.publicationtitle Soft Matter
dc.identifier.publicationvolume 17
dc.identifier.uxxi AR/0000028407
dc.contributor.funder Comunidad de Madrid
dc.contributor.funder Ministerio de Ciencia, Innovación y Universidades (España)
dc.affiliation.instituto UC3M. Instituto Universitario sobre Modelización y Simulación en Fluidodinámica, Nanociencia y Matemática Industrial Gregorio Millán Barbany
 Find Full text

Files in this item

*Click on file's image for preview. (Embargoed files's preview is not supported)


This item appears in the following Collection(s)

Show simple item record