Department/Institute:
UC3M. Departamento de Bioingeniería e Ingeniería Aeroespacial
Degree:
Programa de Doctorado en Mecánica de Fluidos por la Universidad Carlos III de Madrid, la Universidad de Jaén, la Universidad de Zaragoza, la Universidad Nacional de Educación a Distancia, la Universidad Politécnica de Madrid y la Universidad Rovira i Virgili
Issued date:
2021-07
Defense date:
2021-07-27
Committee:
Presidente: Javier Jiménez Sendín.- Secretario: Manuel García-Villalba Navaridas.- Vocal: Sergio Hoyas Calvo
Rights:
Atribución-NoComercial-SinDerivadas 3.0 España
Abstract:
Any device or application in which a solid body and a
fluid are in relative
motion has to deal with the presence of drag forces. Counteract such forces
in an effcient and environmentally-friendly way has become very important
in recent years, in view of tAny device or application in which a solid body and a
fluid are in relative
motion has to deal with the presence of drag forces. Counteract such forces
in an effcient and environmentally-friendly way has become very important
in recent years, in view of the sustainable-development challenges imposed
by global authorities. The interaction between any engineering device and
a surrounding
uid occurs most of the time in a turbulent regime. Despite
the chaotic appearance of any turbulent
ow, a close inspection reveals the
presence of patterns that maintain their structure over a period of time. These
patterns, known as coherent structures, are of utmost importance, since they
are a low-dimensional expression of a complex highly-dimensional dynamical
system that can be used to target affordable control strategies. Taking into
account that control models rely on proper identi cation of the
ow state, it
is necessary to acquire this information in a way that is su ciently robust
for real applications. For example, the experimental tools normally used in
wind tunnels (for instance, velocity eld measurement techniques like Particle
Image Velocimetry) cannot be used in an airborne
ight. It becomes necessary
to acquire this information from sensors that can be embedded in the device
itself. The present thesis attempts to provide a technique based on deep neural
networks that allows to reconstruct turbulent
ows and their energy-carrying
coherent structures from sensors embedded in the wall. The choice of neural
networks, characterized by their ability to approximate non-linear relations, is
based on the development of new algorithms that has occurred in recent years
due to the availability of new computational resources.
The rst part the dissertation aims to develop a model that combines the
ability of prediction in nonlinear systems of deep neural networks with the
compression capabilities of proper orthogonal decomposition (POD). For that
purpose, a direct numerical simulation (DNS) of a turbulent channel
ow of
Ret = 1000 is used. Using wall-shear-stress information, the proposed architecture
extracts information into feature maps through a series of convolutional
neural networks, which are later converted in POD modes coefficients by using
fully-connected neural networks. Since the rst POD modes can be ascribed to
the most energetic structures in any
ow, the proposed networks aim to provide
an estimation of the fi rst 10 POD modes. This approach allows to reconstruct
wall-parallel
ow elds containing the most energetic structures in the
ow.
This approach is compared with a baseline linear method, proving that neural networks are able to trace better the nonlinear effect of turbulent
ows in the
wall-normal direction.
The next step is to improve this model to reconstruct as much
ow scales as
possible. For such purpose, a DNS of turbulent open-channel
ow is used, with
Ret = [180-550]. The aforementioned network is transformed into a fully convolutional
network, which allows to exploit better the spatial organization
of the POD modes and retrieve a signifi cant larger amount of
flow energy,
surpassing 90%. The results show that the prediction quality decays with
increasing wall distance. This is because the imprint of the
flow structures at
the wall is related in a linear way for all scales that have a size of the order of
the distance to the wall. In contrast, the smaller scales do not impose their
imprint directly on the wall, and the nonlinear relationship between the two
attenuates with distance. For these results, the energy spectrum of the
flow has
also been evaluated, showing that the accuracy loss of the predictions begins
with the smallest scales. However, the predictions are capable of recovering the
largest structures of the
ow, which are the ones that transport the bulk of
energy. Furthermore, this network is compared with a network that does not
exploit the compressibility advantages of POD. The results are overall similar,
although the network based on POD appear slightly more robust for increasing
distance from the wall.
While the previous networks have used fully-resolved wall information
coming from DNS simulation, n real applications it is often difficult to embed
such a ne mesh of sensors in the wall. Among the different types of architecture
that comprise neural networks, generative adversarial networks (GANs) have
stood out for their ability to recover the small-scale details of low-resolution
images. In fact, they have already been proposed as a tool to recover resolution
in
flow measurements. In this thesis the use of GANs to retrieve high-resolution
wall information is presented. GANs performance is evaluated for different
information loss ratios, showing that even in extreme cases GANs are capable
of recovering the most energetic scales of the
flow footprint at the wall.
Finally, as the use of GANs has been proven successful for both wall and
flow
fields, it is proposed to use them to make a direct estimation of the
flow from wall
quantities. The results offer a signi cant improvement in
flow reconstruction
when compared to the previous results. This improvement can be ascribed
to the complexity of GAN architectures, which allows to optimize better the
amount of information fed into the network without suffering vanishing-gradient
problems. The reconstruction performances are also tested with low-resolution
input data. Although the predictions get worse when moving away from the
wall also in this case, the rate is lower than in the previous cases. This allows to
have reconstructions that capture the coherent structures away from the wall.[+][-]
Cualquier dispositivo o aplicación en la que un cuerpo sólido y un
fluido estén en movimiento relativo tiene que lidiar con la presencia de fuerzas de arrastre. A la vista de los desafíos de desarrollo sostenible que han impuesto las autoridades
mundiales, Cualquier dispositivo o aplicación en la que un cuerpo sólido y un
fluido estén en movimiento relativo tiene que lidiar con la presencia de fuerzas de arrastre. A la vista de los desafíos de desarrollo sostenible que han impuesto las autoridades
mundiales, contrarrestar estas fuerzas de una manera e ficiente y amistosa con
el medio ambiente se ha convertido en un tema de suma importancia. La
interacción entre un dispositivo de carácter industrial y el fluido que lo rodea
ocurre la mayor parte del tiempo en el régimen turbulento. A pesar de la
apariencia caótica que tienen los flujos turbulentos, una inspección de cerca
revela la presencia de patrones que mantienen su estructura durante algún
tiempo. Estos patrones, conocidos como estructuras coherentes, son de suma
importancia, ya que son una expresión de baja dimensión de un sistema dinámico
complejo de alta dimensionalidad que puede usarse para desarrollar estrategias
de control asequibles. Teniendo en cuenta que los modelos de control se basan
en la identi cación adecuada del estado del flujo, es necesario adquirir esta
información de una manera que sea lo su ficientemente robusta para aplicaciones
reales. Por ejemplo, las herramientas experimentales que se utilizan normalmente
en los túneles de viento, como la velocimetría de imágenes de partículas para
la medición del campo de velocidad, no se pueden utilizar durante el vuelo de
un avión regular. Es necesario adquirir esta información a partir de sensores
que se puedan incrustar en el propio dispositivo. La presente tesis intenta
proporcionar una técnica basada en redes neuronales profundas que permita
reconstruir
flujos turbulentos y sus estructuras coherentes portadoras de energía
a partir de sensores embebidos en la pared. La elección de las redes neuronales,
caracterizadas por su capacidad para aproximar relaciones no lineales, se basa
en el desarrollo de nuevos algoritmos que han aparecido en los últimos años,
gracias a los avances de los nuevos recursos computacionales.
La primera parte de esta disertación tiene como objetivo desarrollar un
modelo que combine la capacidad de predicción en sistemas no lineales de redes
neuronales profundas con las capacidades de compresión de la Descomposición
Modal Ortogonal (Proper Orthogonal Decomposition, POD). Para ello, se
utiliza una simulación numérica directa (Direct Numerical Simulation, DNS)
de un flujo de canal turbulento, con Ret = 1000. Midiendo los esfuerzos de
cortadura en la pared, la arquitectura propuesta extrae información en mapas
de características a través de una serie de redes neuronales convolucionales, que
luego se convierten en coe cientes de modos POD mediante el uso de redes
neuronales completamente conectadas. Dado que los primeros modos POD se pueden atribuir a las estructuras más energéticas en cualquier
flujo, las redes propuestas tienen como objetivo proporcionar una estimación de los primeros
10 modos POD. Este enfoque permite reconstruir campos de
ujo paralelos a la
pared que contienen sus estructuras más energéticas. Este método propuesto
se compara con un método lineal de referencia, lo que demuestra que las redes
neuronales pueden rastrear mejor el efecto no lineal de los
flujos turbulentos en
la dirección normal de la pared.
El siguiente paso es mejorar este modelo para reconstruir tantas escalas
del flujo como sea posible. Para ello se utiliza un DNS de
flujo turbulento en
canal abierto, con Ret = [180-550]. La mencionada red se transforma en una
red totalmente convolucional, lo que permite aprovechar mejor la organización
espacial de los modos POD y recuperar una cantidad signi ficativamente mayor
de energía de
flujo, superando el 90%. Los resultados muestran que la calidad de
la predicción decae a medida que aumenta la distancia a la pared. Esto se debe
a que la huella de las estructuras del
flujo en la pared esáa relacionada de forma
lineal para todas las escalas que tienen un tamaño del orden de la distancia
a la pared. Por el contrario, las escalas más pequeñas no imponen su huella
directamente en la pared y la relación no lineal entre las dos se atenúa con la
distancia. Para estos resultados, también se ha evaluado el espectro de energía
del flujo, mostrando que la pérdida de precisión de las predicciones comienza
con las escalas más pequeñas. Sin embargo, las predicciones son capaces de
recuperar las estructuras más grandes del flujo, que son las que transportan
la mayor parte de la energía. Además, esta red se compara con una red que
no aprovecha las ventajas de compresibilidad de la POD. Los resultados son
en general similares, aunque la red basada en la POD parece ligeramente más
robusta cuando aumenta la distancia desde la pared.
Si bien las redes anteriores han utilizado información de pared completamente
resuelta proveniente de la simulación de DNS, en aplicaciones reales es
difícil incrustar una malla tan fi na de sensores en la pared. Entre los distintos
tipos de arquitectura que componen las redes neuronales, las redes de generación
por confrontación (Generative Adversarial Networks, GAN) se han destacado
por su capacidad para recuperar detalles a pequeña escala en imágenes de baja
resolución. De hecho, ya se han propuesto como herramienta para recuperar
la resolución en medidas de
flujo. En esta tesis se presenta una alternativa
basada en GANs para recuperar información de pared de alta resolución. Se
han evaluado las prestaciones de las GANs para diferentes ratios de pérdida de
información, demostrando que incluso en casos extremos las GANs son capaces
de recuperar las escalas más energéticas de la huella de
flujo en la pared.
Finalmente, dado que el uso de las GANs ha demostrado ser exitoso tanto
para los campos de pared como para los de
flujo, se propone usarlos para
hacer una estimación directa del
flujo a partir de las cantidades de pared. Los
resultados ofrecen una mejora signifi cativa en la reconstrucción del
flujo en
comparación con los resultados anteriores. Esta mejora se puede atribuir a la
complejidad de las arquitecturas GAN, que permite optimizar mejor la cantidad de información introducida en la red sin sufrir problemas de desvanecimiento de
gradiente. Las prestaciones de reconstrucción también se han probado con datos
de entrada de baja resolución. Aunque en este caso las predicciones también
empeoran al alejarse del muro, la tasa de disminución es menor que en los casos
anteriores. Esto permite tener reconstrucciones que capturan las estructuras
coherentes lejos de la pared.[+][-]