Study of the Effect of Exploiting 3D Semantic Segmentation in LiDAR Odometry

e-Archivo Repository

Show simple item record

dc.contributor.author Moreno Olivo, Francisco Miguel
dc.contributor.author Guindel Gómez, Carlos
dc.contributor.author Armingol Moreno, José María
dc.contributor.author García Fernández, Fernando
dc.date.accessioned 2021-07-27T10:31:28Z
dc.date.available 2021-07-27T10:31:28Z
dc.date.issued 2020-08-02
dc.identifier.bibliographicCitation Moreno, F. M., Guindel, C., Armingol, J. M. & García, F. (2020). Study of the Effect of Exploiting 3D Semantic Segmentation in LiDAR Odometry. Applied Sciences, 10(16), 5657.
dc.identifier.issn 2076-3417
dc.identifier.uri http://hdl.handle.net/10016/33158
dc.description This article belongs to the Special Issue Intelligent Transportation Systems
dc.description.abstract This paper presents a study of how the performance of LiDAR odometry is affected by the preprocessing of the point cloud through the use of 3D semantic segmentation. The study analyzed the estimated trajectories when the semantic information is exploited to filter the original raw data. Different filtering configurations were tested: raw (original point cloud), dynamic (dynamic obstacles are removed from the point cloud), dynamic vehicles (vehicles are removed), far (distant points are removed), ground (the points belonging to the ground are removed) and structure (only structures and objects are kept in the point cloud). The experiments were performed using the KITTI and SemanticKITTI datasets, which feature different scenarios that allowed identifying the implications and relevance of each element of the environment in LiDAR odometry algorithms. The conclusions obtained from this work are of special relevance for improving the efficiency of LiDAR odometry algorithms in all kinds of scenarios.
dc.description.sponsorship Research was supported by the Spanish Government through the CICYT projects (TRA2016-78886-C3-1-R and RTI2018-096036-B-C21) and the Comunidad de Madrid through SEGVAUTO-4.0-CM (P2018/EMT-4362) and PEAVAUTO-CM-UC3M.
dc.format.extent 12
dc.language.iso eng
dc.publisher MDPI
dc.rights © 2020 by the authors.
dc.rights Atribución 3.0 España
dc.rights.uri http://creativecommons.org/licenses/by/3.0/es/
dc.subject.other Localization
dc.subject.other Intelligent vehicles
dc.subject.other LiDAR
dc.title Study of the Effect of Exploiting 3D Semantic Segmentation in LiDAR Odometry
dc.type article
dc.subject.eciencia Robótica e Informática Industrial
dc.identifier.doi https://doi.org/10.3390/app10165657
dc.rights.accessRights openAccess
dc.relation.projectID Gobierno de España. TRA2016-78886-C3-1-R
dc.relation.projectID Gobierno de España. RTI2018-096036-B-C21
dc.relation.projectID Comunidad de Madrid. P2018/EMT-4362
dc.type.version publishedVersion
dc.identifier.publicationfirstpage 5657
dc.identifier.publicationissue 16
dc.identifier.publicationtitle Applied Sciences
dc.identifier.publicationvolume 10
dc.identifier.uxxi AR/0000026670
dc.contributor.funder Comunidad de Madrid
dc.contributor.funder Ministerio de Ciencia e Innovación (España)
dc.affiliation.dpto UC3M. Departamento de Ingeniería de Sistemas y Automática
dc.affiliation.grupoinv UC3M. Grupo de Investigación: Laboratorio de Robótica (Robotics Lab)
 Find Full text

Files in this item

*Click on file's image for preview. (Embargoed files's preview is not supported)


The following license files are associated with this item:

This item appears in the following Collection(s)

Show simple item record