Large Quantum Delocalization of a Levitated Nanoparticle using Optimal Control: Applications for Force Sensing and Entangling via Weak Forces
Editorial:
American Physical Society
Fecha de edición:
2021-07-09
Cita:
Weiss, T., Roda-Llordes, M., Torrontegui, E., Aspelmeyer, M. & Romero-Isart, O. (2021). Large Quantum Delocalization of a Levitated Nanoparticle Using Optimal Control: Applications for Force Sensing and Entangling via Weak Forces. Physical Review Letters, 127(2), 023601.
ISSN:
0031-9007
Patrocinador:
Comunidad de Madrid
Ministerio de Ciencia e Innovación (España)
Agradecimientos:
We thank P. Feldmann, D. Giannandrea, C. GonzalezBallestero, N. Kiesel, and A. Serafini for helpful discussions. ORI and MA thank the hospitality of the Perimeter Institute in 2017, where we had the first discussions about this project. TW acknowledges financial support from the Alexander von Humboldt foundation. ET acknowledges financial support from Project PGC2018-094792-B-I00 (MCIU/AEI/FEDER,UE), CSIC Research Platform PTI-001, and CAM/FEDER Project No. S2018/TCS-4342 (QUITEMAD-CM).
Proyecto:
Comunidad de Madrid. S2018/TCS-4342
Gobierno de España. PGC2018-094792-B-I00
Palabras clave:
Entanglement production
,
Optomechanics
,
Quantum control
,
Quantum foundations
,
Quantum metrology
,
Quantum-to-classical transition
,
Nanoparticles
Derechos:
© 2021 American Physical Society
Resumen:
We propose to optimally control the harmonic potential of a levitated nanoparticle to quantum delocalize its center-of-mass motional state to a length scale orders of magnitude larger than the quantum zero-point motion. Using a bang-bang control of the harmoni
We propose to optimally control the harmonic potential of a levitated nanoparticle to quantum delocalize its center-of-mass motional state to a length scale orders of magnitude larger than the quantum zero-point motion. Using a bang-bang control of the harmonic potential, including the possibility of inverting it, the initial ground-state-cooled levitated nanoparticle coherently expands to large scales and then contracts to the initial state in a time-optimal way. We show that this fast loop protocol can be used to enhance force sensing as well as to dramatically boost the entangling rate of two weakly interacting nanoparticles. We parameterize the performance of the protocol, and therefore the macroscopic quantum regime that could be explored, as a function of displacement and frequency noise in the nanoparticle’s center-of-mass motion. This noise analysis accounts for the sources of decoherence relevant to current experiments.
[+]
[-]
Mostrar el registro completo del ítem
Impacto:
Ficheros en el ítem
Vista Previa del Fichero
*Click en la imagen del fichero para previsualizar.(Los elementos embargados carecen de esta funcionalidad)
Este ítem aparece en la(s) siguiente(s) colección(es)