Citation:
Estevez, D., Victores, J. G., Fernandez-Fernandez, R. & Balaguer, C. (2020). Enabling garment-agnostic laundry tasks for a Robot Household Companion. Robotics and Autonomous Systems, vol. 123, 103330.
xmlui.dri2xhtml.METS-1.0.item-contributor-funder:
Comunidad de Madrid
Sponsor:
This work was supported by RoboCity2030-III-CM project (S2013/MIT-2748), funded by Programas de Actividades I+D in Comunidad de Madrid, Spain and EU and by a FPU grant funded by Ministerio de Educación, Cultura y Deporte, Spain. It was also supported by the anonymous donor of a red hoodie used in our initial trials. We gratefully acknowledge the support of NVIDIA, United States Corporation with the donation of the NVIDIA Titan X GPU used for this research.
Domestic chores, such as laundry tasks, are dull and repetitive. These tasks consume a significant amount of daily time, and are however unavoidable. Additionally, a great portion of elder and disabled people require help to perform them due to lack of mobilitDomestic chores, such as laundry tasks, are dull and repetitive. These tasks consume a significant amount of daily time, and are however unavoidable. Additionally, a great portion of elder and disabled people require help to perform them due to lack of mobility. In this work we present advances towards a Robot Household Companion (RHC), focusing on the performance of two particular laundry tasks: unfolding and ironing garments. Unfolding is required to recognize the garment prior to any later folding operation. For unfolding, we apply an interactive algorithm based on the analysis of a colored 3D reconstruction of the garment. Regions are clustered based on height, and a bumpiness value is computed to determine the most suitable pick and place points to unfold the overlapping region. For ironing, a custom Wrinkleness Local Descriptor (WiLD) descriptor is applied to a 3D reconstruction to find the most significant wrinkles in the garment. These wrinkles are then ironed using an iterative path-following control algorithm that regulates the amount of pressure exerted on the garment. Both algorithms focus on the feasibility of a physical implementation in real unmodified environments. A set of experiments to validate the algorithms have been performed using a full-sized humanoid robot.[+][-]