Technical Note: Mobile accelerator guidance using an optical tracker during docking in IOERT procedures

e-Archivo Repository

Show simple item record

dc.contributor.author Marinetto Carrillo, Eugenio Daniel
dc.contributor.author González Víctores, Juan Carlos
dc.contributor.author García Sevilla, Mónica
dc.contributor.author Muñoz, Mercedes
dc.contributor.author Calvo, Felipe Ángel
dc.contributor.author Balaguer Bernaldo de Quirós, Carlos
dc.contributor.author Desco Menéndez, Manuel
dc.contributor.author Pascau González-Garzón, Javier
dc.date.accessioned 2021-06-16T10:29:04Z
dc.date.available 2021-06-16T10:29:04Z
dc.date.issued 2017-10
dc.identifier.bibliographicCitation Marinetto, E., Victores, J. G., García-Sevilla, M., Muñoz, M., Calvo, F. N., Balaguer, C., Desco, M. & Pascau, J. (2017). Technical Note: Mobile accelerator guidance using an optical tracker during docking in IOERT procedures. Medical Physics, 44(10), pp. 5061–5069.
dc.identifier.issn 0094-2405
dc.identifier.uri http://hdl.handle.net/10016/32881
dc.description.abstract Purpose: Intraoperative electron radiation therapy (IOERT) involves the delivery of a high radiation dose during tumor resection in a shorter time than other radiation techniques, thus improving local control of tumors. However, a linear accelerator device is needed to produce the beam safely. Mobile linear accelerators have been designed as dedicated units that can be moved into the operating room and deliver radiation in situ. Correct and safe dose delivery is a key concern when using mobile accelerators. The applicator is commonly fixed to the patient's bed to ensure that the dose is delivered to the prescribed location, and the mobile accelerator is moved to dock the applicator to the radiation beam output (gantry). In a typical clinical set-up, this task is time-consuming because of safety requirements and the limited degree of freedom of the gantry. The objective of this study was to present a navigation solution based on optical tracking for guidance of docking to improve safety and reduce procedure time. Method: We used an optical tracker attached to the mobile linear accelerator to track the prescribed localization of the radiation collimator inside the operating room. Using this information, the integrated navigation system developed computes the movements that the mobile linear accelerator needs to perform to align the applicator and the radiation gantry and warns the physician if docking is unrealizable according to the available degrees of freedom of the mobile linear accelerator. Furthermore, we coded a software application that connects all the necessary functioning elements and provides a user interface for the system calibration and the docking guidance. Result: The system could safeguard against the spatial limitations of the operating room, calculate the optimal arrangement of the accelerator and reduce the docking time in computer simulations and experimental setups. Conclusions: The system could be used to guide docking with any commercial linear accelerator. We believe that the docking navigator we present is a major contribution to IOERT, where docking is critical when attempting to reduce surgical time, ensure patient safety and guarantee that the treatment administered follows the radiation oncologist's prescription.
dc.format.extent 9
dc.language.iso eng
dc.publisher Wiley
dc.rights © 2017 American Association of Physicists in Medicine
dc.subject.other Docking
dc.subject.other Hard docking
dc.subject.other Image-guided surgery
dc.subject.other IOERT
dc.subject.other Optical tracking
dc.subject.other Soft docking
dc.title Technical Note: Mobile accelerator guidance using an optical tracker during docking in IOERT procedures
dc.type article
dc.subject.eciencia Biología y Biomedicina
dc.subject.eciencia Robótica e Informática Industrial
dc.identifier.doi https://doi.org/10.1002/mp.12482
dc.rights.accessRights openAccess
dc.relation.projectID Gobierno de España. TEC2013-48251-C2-1-R
dc.relation.projectID Comunidad de Madrid. S2013/MIT-3024
dc.relation.projectID Gobierno de España. DTS14/00192
dc.relation.projectID Gobierno de España. PI15/02121
dc.type.version acceptedVersion
dc.identifier.publicationfirstpage 5061
dc.identifier.publicationissue 10
dc.identifier.publicationlastpage 5069
dc.identifier.publicationtitle Medical Physics
dc.identifier.publicationvolume 44
dc.identifier.uxxi AR/0000020565
dc.contributor.funder Ministerio de Economía y Competitividad (España)
dc.contributor.funder Comunidad de Madrid
dc.affiliation.dpto UC3M. Departamento de Ingeniería de Sistemas y Automática
dc.affiliation.dpto UC3M. Departamento de Bioingeniería
dc.affiliation.grupoinv UC3M. Grupo de Investigación: Laboratorio de Robótica (Robotics Lab)
dc.affiliation.grupoinv UC3M. Grupo de Investigación: Biomedical Imaging and Instrumentation Group
dc.affiliation.grupoinv UC3M. Grupo de Investigación: BSEL - Laboratorio de Ciencia e Ingeniería Biomédica
 Find Full text

Files in this item

*Click on file's image for preview. (Embargoed files's preview is not supported)


This item appears in the following Collection(s)

Show simple item record