Performance of a solar absorption cooling system using nanofluids and a membrane-based microchannel desorber

e-Archivo Repository

Show simple item record

dc.contributor.author Venegas Bernal, María Carmen
dc.contributor.author García Hernando, Néstor
dc.contributor.author Zacarías Santiago, Alejandro
dc.contributor.author Vega Blázquez, Mercedes de
dc.date.accessioned 2021-06-07T12:34:30Z
dc.date.available 2021-06-07T12:34:30Z
dc.date.issued 2020-04-16
dc.identifier.bibliographicCitation Venegas, M., García-Hernando, N., Zacarías, A., and de Vega, M. (2020). Performance of a Solar Absorption Cooling System Using Nanofluids and a Membrane-Based Microchannel Desorber. Applied Sciences, 10(8), 2761
dc.identifier.issn 2076-3417
dc.identifier.uri http://hdl.handle.net/10016/32843
dc.description.abstract In this work, the performance of a single effect absorption cooling system fed by solar thermal energy is evaluated. The absorption chiller includes a membrane-based microchannel desorber using three types of nanoparticles: Al2O3, CuO, or carbon nanotubes (CNT). Correlations available in the open literature to calculate the thermal conductivity of nanofluids are reviewed. Using experimental data for the water-lithium bromide solution (H2O-LiBr) with Al2O3 and CNT nanoparticles, the most appropriate correlation for thermal conductivity is selected. Nanofluid properties are evaluated using a concentration of nanoparticles of up to 5% in volume. The largest increase in the desorption rate (7.9%), with respect to using pure H2O-LiBr solution, is obtained using CNT nanoparticles and the maximum concentration of nanoparticles simulated. The performance of the chiller is evaluated and the daily solar coefficient of performance (SCOP) for the solar cooling facility is obtained. The best improvement with respect to the conventional system (without nanoparticles) represents an increase in the cooling effect of up to 6%. The maximum number of desorber modules recommended, always lower than 50, has been identified.
dc.description.sponsorship This research was funded by FEDER/Ministerio de Ciencia, Innovación y Universidades—Agencia Estatal de Investigación/_Proyecto (DPI2017-83123-R), and science research grant SIP20190076, by the National Polytechnic Institute of Mexico (IPN). A.Z. thanks CONACYT for the 740638 scholarship granted.
dc.format.extent 16
dc.language.iso eng
dc.publisher MDPI
dc.rights © 2020 by the authors
dc.rights Atribución-NoComercial-SinDerivadas 3.0 España
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subject.other Absorption refrigeration
dc.subject.other Microporous flat membranes
dc.subject.other Rectangular microchannels
dc.subject.other H2O-LiBr
dc.subject.other Nanoparticles
dc.subject.other Desorber
dc.subject.other Nanofluids
dc.title Performance of a solar absorption cooling system using nanofluids and a membrane-based microchannel desorber
dc.type article
dc.subject.eciencia Energías Renovables
dc.identifier.doi https://doi.org/10.3390/app10082761
dc.rights.accessRights openAccess
dc.relation.projectID Gobierno de España. DPI2017-83123-R
dc.type.version publishedVersion
dc.identifier.publicationfirstpage 1
dc.identifier.publicationissue 8 (2761)
dc.identifier.publicationlastpage 16
dc.identifier.publicationtitle Applied Sciences
dc.identifier.publicationvolume 10
dc.identifier.uxxi AR/0000024796
dc.contributor.funder Ministerio de Ciencia, Innovación y Universidades (España)
 Find Full text

Files in this item

*Click on file's image for preview. (Embargoed files's preview is not supported)


The following license files are associated with this item:

This item appears in the following Collection(s)

Show simple item record