Software for malicious macro detection

e-Archivo Repository

Show simple item record

dc.contributor.author Peidro Paredes, Miguel Pedro
dc.date.accessioned 2021-05-28T08:24:21Z
dc.date.available 2021-05-28T08:24:21Z
dc.date.issued 2020
dc.date.submitted 2020-07
dc.identifier.uri http://hdl.handle.net/10016/32789
dc.description.abstract The objective of this work is to give a detailed study of the development process of a software tool for the detection of the Emotet virus in Microsoft Office files, Emotet is a virus that has been wreaking havoc mainly in the business environment, from its beginnings as a banking Trojan to nowadays. In fact, this polymorphic family has managed to generate evident, incalculable and global inconveniences in the business activity without discriminating by corporate typology, affecting any company regardless of its size or sector, even entering into government agencies, as well as the citizens themselves as a whole. The existence of two main obstacles for the detection of this virus, constitute an intrinsic reality to it, on the one hand, the obfuscation in its macros and on the other, its polymorphism, are essential pieces of the analysis, focusing our tool in facing precisely two obstacles, descending to the analysis of the macros features and the creation of a neuron network that uses machine learning to recognize the detection patterns and deliberate its malicious nature. With Emotet's in-depth nature analysis, our goal is to draw out a set of features from the malicious macros and build a machine learning model for their detection. After the feasibility study of this project, its design and implementation, the results that emerge endorse the intention to detect Emotet starting only from the static analysis and with the application of machine learning techniques. The detection ratios shown by the tests performed on the final model, present a accuracy of 84% and only 3% of false positives during this detection process.
dc.language.iso eng
dc.rights Atribución-NoComercial-SinDerivadas 3.0 España
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subject.other Emotet
dc.subject.other Malware detection
dc.subject.other Machine learning
dc.subject.other Botnet
dc.subject.other Banking trojan
dc.title Software for malicious macro detection
dc.type bachelorThesis
dc.subject.eciencia Informática
dc.rights.accessRights openAccess
dc.description.degree Grado en Ingeniería Informática
dc.contributor.departamento Universidad Carlos III de Madrid. Departamento de Informática
dc.contributor.tutor Fuentes García-Romero de Tejada, José María de
 Find Full text

Files in this item

*Click on file's image for preview. (Embargoed files's preview is not supported)


The following license files are associated with this item:

This item appears in the following Collection(s)

Show simple item record