Citation:
Structured matrices in numerical linear algebra: analysis, algorithms and applications. Springer Nature Switzerland AG, 2019. Pp. 157-179
ISBN:
978-3-030-04087-1
ISSN:
2281-518X
xmlui.dri2xhtml.METS-1.0.item-contributor-funder:
Ministerio de Economía y Competitividad (España)
Sponsor:
This work has been partially supported by theMinisterio de Economía y Competitividad of Spain through grants MTM2015-68805-REDT and MTM2015-65798-P.
Serie/No.:
Springer INdAM Series, vol. 30
Project:
Gobierno de España. MTM2015-65798-P Gobierno de España. MTM2015-68805-REDT
In this paper, we introduce a general class of quasi-sparse potential companion pencils for arbitrary square matrix polynomials over an arbitrary field, which extends the class introduced in [B. Eastman, I.-J. Kim, B. L. Shader, K.N. Vander Meulen, Companion mIn this paper, we introduce a general class of quasi-sparse potential companion pencils for arbitrary square matrix polynomials over an arbitrary field, which extends the class introduced in [B. Eastman, I.-J. Kim, B. L. Shader, K.N. Vander Meulen, Companion matrix patterns. Linear Algebra Appl. 436 (2014) 255-272] for monic scalar polynomials. We provide a canonical form, up to permutation, for companion pencils in this class. We also relate these companion pencils with other relevant families of companion linearizations known so far. Finally, we determine the number of different sparse companion pencils in the class, up to permutation.[+][-]