dc.contributor.author |
Bénéteau, Catherine |
dc.contributor.author |
Khavinson, Dmitry |
dc.contributor.author |
Sola, Alan A. |
dc.contributor.author |
Liaw, Constanze |
dc.contributor.author |
Seco Forsnacke, Daniel
|
dc.date.accessioned |
2021-05-14T09:11:45Z |
dc.date.available |
2021-05-14T09:11:45Z |
dc.date.issued |
2016-12 |
dc.identifier.bibliographicCitation |
Bénéteau, C., Khavinson, D., Sola, A. A., Liaw, C. & Seco, D. (2016). Orthogonal polynomials, reproducing kernels, and zeros of optimal approximants. Journal of the London Mathematical Society, 94(3), pp. 726–746. |
dc.identifier.issn |
0024-6107 |
dc.identifier.uri |
http://hdl.handle.net/10016/32632 |
dc.description.abstract |
We study connections between orthogonal polynomials, reproducing kernel functions, and polynomials P minimizing Dirichlet‐type norms ∥pf−1∥α for a given function f . For α ∈ [0,1] (which includes the Hardy and Dirichlet spaces of the disk) and general f , we show that such extremal polynomials are non‐vanishing in the closed unit disk. For negative α , the weighted Bergman space case, the extremal polynomials are non‐vanishing on a disk of strictly smaller radius, and zeros can move inside the unit disk. We also explain how dist Dα (1, f · Pn) , where Pn is the space of polynomials of degree at most n , can be expressed in terms of quantities associated with orthogonal polynomials and kernels, and we discuss methods for computing the quantities in question. |
dc.description.sponsorship |
This work was supported by NSF under the grant DMS1500675. DS was supported by ERC Grant 2011-ADG-20110209 from EU programme FP2007-2013 and MEC Projects MTM2014-51824-P and MTM2011-24606. |
dc.format.extent |
21 |
dc.language.iso |
eng |
dc.publisher |
Wiley |
dc.rights |
© 2016 London Mathematical Society |
dc.title |
Orthogonal polynomials, reproducing kernels, and zeros of optimal approximants |
dc.type |
article |
dc.subject.eciencia |
Matemáticas |
dc.identifier.doi |
https://doi.org/10.1112/jlms/jdw057 |
dc.rights.accessRights |
openAccess |
dc.relation.projectID |
Gobierno de España. MTM2014-51824-P |
dc.relation.projectID |
Gobierno de España. MTM2011-24606 |
dc.type.version |
acceptedVersion |
dc.identifier.publicationfirstpage |
726 |
dc.identifier.publicationissue |
3 |
dc.identifier.publicationlastpage |
746 |
dc.identifier.publicationtitle |
Journal of the London Mathematical Society |
dc.identifier.publicationvolume |
94 |
dc.identifier.uxxi |
AR/0000026420 |
dc.contributor.funder |
Ministerio de Economía y Competitividad (España) |
dc.affiliation.dpto |
UC3M. Departamento de Matemáticas |
dc.affiliation.grupoinv |
UC3M. Grupo de Investigación: Análisis Aplicado |