Schatten classes of generalized Hilbert operators

e-Archivo Repository

Show simple item record Peláez, José Ángel Seco Forsnacke, Daniel 2021-05-14T08:24:00Z 2021-05-14T08:24:00Z 2018-01
dc.identifier.bibliographicCitation Peláez, J. N. & Seco, D. (2017). Schatten classes of generalized Hilbert operators. Collectanea Mathematica, 69(1), pp. 83–105.
dc.identifier.issn 0010-0757
dc.description.abstract Let Dv denote the Dirichlet type space in the unit disc induced by a radial weight v for which vˆ(r)=∫1rv(s)ds satisfies the doubling property ∫1rv(s)ds≤C∫11+r2v(s)ds. In this paper, we characterize the Schatten classes Sp(Dv) of the generalized Hilbert operators Hg(f)(z)=∫10f(t)g′(tz)dt acting on Dv, where v satisfies certain Muckenhoupt type conditions. For p≥1, it is proved that Hg∈Sp(Dv) if and only if ∫10((1−r)∫π−π|g′(reiθ)|2dθ)p2dr1−r<∞.
dc.format.extent 23
dc.language.iso eng
dc.publisher Springer
dc.rights © 2017, Universitat de Barcelona
dc.subject.other Dirichlet type spaces
dc.subject.other Schatten classes
dc.subject.other Generalized hilbert operators
dc.subject.other Muckenhoupt weight
dc.subject.other Doubling weights
dc.title Schatten classes of generalized Hilbert operators
dc.type article
dc.subject.eciencia Matemáticas
dc.rights.accessRights openAccess
dc.relation.projectID Gobierno de España. MTM2011-24606
dc.relation.projectID Gobierno de España. MTM2014-52865-P
dc.relation.projectID Gobierno de España. MTM2015-69323-REDT
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/291497/LocalStructure
dc.type.version acceptedVersion
dc.identifier.publicationfirstpage 83
dc.identifier.publicationissue 1
dc.identifier.publicationlastpage 105
dc.identifier.publicationtitle Collectanea Mathematica
dc.identifier.publicationvolume 69
dc.identifier.uxxi AR/0000026419
dc.contributor.funder Ministerio de Economía y Competitividad (España)
dc.contributor.funder European Commission
 Find Full text

Files in this item

*Click on file's image for preview. (Embargoed files's preview is not supported)

This item appears in the following Collection(s)

Show simple item record