Citation:
Moscoso, M., Novikov, A., Papanicolaou, G. & Tsogka, C. (2020). Imaging with highly incomplete and corrupted data. Inverse Problems, 36(3), 035010.
xmlui.dri2xhtml.METS-1.0.item-contributor-funder:
Ministerio de Economía y Competitividad (España)
Sponsor:
Part of this material is based upon work supported by the National Science Foundation under Grant No. DMS-1439786 while the authors were in residence at the Institute for Computational and Experimental Research in Mathematics (ICERM) in Providence, RI, during the Fall 2017 semester. The work of M Moscoso was partially supported by Spanish MICINN grant FIS2016-77892-R. The work of A Novikov was partially supported by NSF grants DMS-1515187, DMS-1813943. The work of C Tsogka was partially supported by AFOSR FA9550-17-1-0238.
Project:
Gobierno de España. FIS2016-77892-R
Keywords:
Array imaging
,
L1-norm minimization
,
Highly corrupted data
We consider the problem of imaging sparse scenes from a few noisy data using an L1-minimization approach. This problem can be cast as a linear system of the form Ap = b, where A is an N x K measurement matrix. We assume that the dimension of the unknown sparseWe consider the problem of imaging sparse scenes from a few noisy data using an L1-minimization approach. This problem can be cast as a linear system of the form Ap = b, where A is an N x K measurement matrix. We assume that the dimension of the unknown sparse vector p E Ck is much larger than the dimension of the data vector b E Cn, i.e. K >>N. We provide a theoretical framework that allows us to examine under what conditions the L1-minimization problem admits a solution that is close to the exact one in the presence of noise. Our analysis shows that L1-minimization is not robust for imaging with noisy data when high resolution is required. To improve the performance of L1-minimization we propose to solve instead the augmented linear system [A|C]p = b, where the N = Σ matrix C is a noise collector. It is constructed so as its column vectors provide a frame on which the noise of the data, a vector of dimension N, can be well approximated. Theoretically, the dimension Σ of the noise collector should be eN which would make its use not practical. However, our numerical results illustrate that robust results in the presence of noise can be obtained with a large enough number of columns Σ~10K.[+][-]