dc.contributor.author |
Álvarez Caudevilla, Pablo
|
dc.contributor.author |
Evans, Jonathan |
dc.contributor.author |
Galaktionov, Victor A. |
dc.date.accessioned |
2021-04-13T09:53:29Z |
dc.date.available |
2021-04-13T09:53:29Z |
dc.date.issued |
2018-08 |
dc.identifier.bibliographicCitation |
Álvarez-Caudevilla, P., D. Evans, J. & A. Galaktionov, V. (2018). Gradient blow-up for a fourth-order quasilinear Boussinesq-type equation. Discrete & Continuous Dynamical Systems, 38(8), pp. 3913–3938. |
dc.identifier.issn |
1078-0947 |
dc.identifier.uri |
http://hdl.handle.net/10016/32342 |
dc.description.abstract |
The Cauchy problem for a fourth-order Boussinesq-type quasilinear wave equation (QWE-4) of the form u(tt) = -(vertical bar u vertical bar(n) u)(xxxx) in R x R+, with a fixed exponent n > 0, and bounded smooth initial data, is considered. Self-similar single-point gradient blow-up solutions are studied. It is shown that such singular solutions exist and satisfy the case of the so-called self-similarity of the second type. Together with an essential and, often, key use of numerical methods to describe possible types of gradient blow-up, a "homotopy" approach is applied that traces out the behaviour of such singularity patterns as n -> 0(+), when the classic linear beam equation occurs u(tt) = - u(xxxx), with simple, better-known and understandable evolution properties. |
dc.format.extent |
26 |
dc.language.iso |
eng |
dc.publisher |
American Institute of Mathematical Sciences (AIMS) |
dc.rights |
© 2018 American Institute of Mathematical Sciences |
dc.subject.other |
Fourth-order quasilinear wave equation |
dc.subject.other |
Gradient blow-up |
dc.subject.other |
Self- similarity of the second kind |
dc.title |
Gradient blow-up for a fourth-order quasilinear Boussinesq-type equation |
dc.type |
article |
dc.subject.eciencia |
Matemáticas |
dc.identifier.doi |
https://doi.org/10.3934/dcds.2018170 |
dc.rights.accessRights |
openAccess |
dc.relation.projectID |
Gobierno de España. RYC-2014-15284 |
dc.relation.projectID |
Gobierno de España. MTM2016-80618-P |
dc.type.version |
acceptedVersion |
dc.identifier.publicationfirstpage |
3913 |
dc.identifier.publicationissue |
8 |
dc.identifier.publicationlastpage |
3938 |
dc.identifier.publicationtitle |
Discrete & Continuous Dynamical Systems |
dc.identifier.publicationvolume |
38 |
dc.identifier.uxxi |
AR/0000022080 |
dc.contributor.funder |
Ministerio de Economía y Competitividad (España) |
dc.affiliation.dpto |
UC3M. Departamento de Matemáticas |