Iterative variable selection for high-dimensional data: Prediction of pathological response in triple-negative breast cancer

e-Archivo Repository

Show simple item record

dc.contributor.author Laria de la Cruz, Juan Carlos
dc.contributor.author Aguilera Morillo, María del Carmen
dc.contributor.author Álvarez Castillo, Enrique Luis
dc.contributor.author Lillo Rodríguez, Rosa Elvira
dc.contributor.author López Taruella, Sara
dc.contributor.author Del Monte Millán, María
dc.contributor.author Picornell, Antonio C.
dc.contributor.author Martín, Miguel
dc.contributor.author Romo, Juan
dc.date.accessioned 2021-03-18T12:14:34Z
dc.date.available 2021-03-18T12:14:34Z
dc.date.issued 2021-01-23
dc.identifier.bibliographicCitation Laria, J.C.; Aguilera-Morillo, M.C.; Álvarez, E.; Lillo, R.E.; López-Taruella, S.; del Monte-Millán, M.; Picornell, A.C.; Martín, M.; Romo, J. Iterative Variable Selection for High-Dimensional Data: Prediction of Pathological Response in Triple-Negative Breast Cancer. Mathematics 2021, 9, 222.
dc.identifier.issn 2227-7390
dc.identifier.uri http://hdl.handle.net/10016/32185
dc.description.abstract Over the last decade, regularized regression methods have offered alternatives for performing multi-marker analysis and feature selection in a whole genome context. The process of defining a list of genes that will characterize an expression profile remains unclear. It currently relies upon advanced statistics and can use an agnostic point of view or include some a priori knowledge, but overfitting remains a problem. This paper introduces a methodology to deal with the variable selection and model estimation problems in the high-dimensional set-up, which can be particularly useful in the whole genome context. Results are validated using simulated data and a real dataset from a triple-negative breast cancer study.
dc.description.sponsorship This work was partially supported by a research grant from Instituto de Salud Carlos III (PI 15/00117), co-funded by FEDER, to M. Martín.
dc.language.iso eng
dc.publisher MDPI
dc.rights © 2021 by the authors
dc.rights Atribución 3.0 España
dc.rights.uri http://creativecommons.org/licenses/by/3.0/es/
dc.subject.other Variable selection
dc.subject.other High-dimension
dc.subject.other Regularization
dc.subject.other Classification
dc.subject.other Sparse-group Lasso
dc.title Iterative variable selection for high-dimensional data: Prediction of pathological response in triple-negative breast cancer
dc.type article
dc.subject.eciencia Estadística
dc.identifier.doi https://doi.org/10.3390/math9030222
dc.rights.accessRights openAccess
dc.type.version publishedVersion
dc.identifier.publicationfirstpage 1
dc.identifier.publicationissue 3
dc.identifier.publicationlastpage 14
dc.identifier.publicationtitle Mathematics
dc.identifier.publicationvolume 9
dc.identifier.uxxi AR/0000027093
dc.affiliation.instituto UC3M. Instituto UC3M - Santander de Big Data
 Find Full text

Files in this item

*Click on file's image for preview. (Embargoed files's preview is not supported)


The following license files are associated with this item:

This item appears in the following Collection(s)

Show simple item record