dc.contributor.author | Laria de la Cruz, Juan Carlos![]() |
dc.contributor.author | Aguilera Morillo, María del Carmen |
dc.contributor.author | Álvarez Castillo, Enrique Luis |
dc.contributor.author | Lillo Rodríguez, Rosa Elvira![]() |
dc.contributor.author | López Taruella, Sara |
dc.contributor.author | Del Monte Millán, María |
dc.contributor.author | Picornell, Antonio C. |
dc.contributor.author | Martín, Miguel |
dc.contributor.author | Romo, Juan![]() |
dc.date.accessioned | 2021-03-18T12:14:34Z |
dc.date.available | 2021-03-18T12:14:34Z |
dc.date.issued | 2021-01-23 |
dc.identifier.bibliographicCitation | Laria, J.C.; Aguilera-Morillo, M.C.; Álvarez, E.; Lillo, R.E.; López-Taruella, S.; del Monte-Millán, M.; Picornell, A.C.; Martín, M.; Romo, J. Iterative Variable Selection for High-Dimensional Data: Prediction of Pathological Response in Triple-Negative Breast Cancer. Mathematics 2021, 9, 222. |
dc.identifier.issn | 2227-7390 |
dc.identifier.uri | http://hdl.handle.net/10016/32185 |
dc.description.abstract | Over the last decade, regularized regression methods have offered alternatives for performing multi-marker analysis and feature selection in a whole genome context. The process of defining a list of genes that will characterize an expression profile remains unclear. It currently relies upon advanced statistics and can use an agnostic point of view or include some a priori knowledge, but overfitting remains a problem. This paper introduces a methodology to deal with the variable selection and model estimation problems in the high-dimensional set-up, which can be particularly useful in the whole genome context. Results are validated using simulated data and a real dataset from a triple-negative breast cancer study. |
dc.description.sponsorship | This work was partially supported by a research grant from Instituto de Salud Carlos III (PI 15/00117), co-funded by FEDER, to M. Martín. |
dc.language.iso | eng |
dc.publisher | MDPI |
dc.rights | © 2021 by the authors |
dc.rights | Atribución 3.0 España |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/es/ |
dc.subject.other | Variable selection |
dc.subject.other | High-dimension |
dc.subject.other | Regularization |
dc.subject.other | Classification |
dc.subject.other | Sparse-group Lasso |
dc.title | Iterative variable selection for high-dimensional data: Prediction of pathological response in triple-negative breast cancer |
dc.type | article |
dc.subject.eciencia | Estadística |
dc.identifier.doi | https://doi.org/10.3390/math9030222 |
dc.rights.accessRights | openAccess |
dc.type.version | publishedVersion |
dc.identifier.publicationfirstpage | 1 |
dc.identifier.publicationissue | 3 |
dc.identifier.publicationlastpage | 14 |
dc.identifier.publicationtitle | Mathematics |
dc.identifier.publicationvolume | 9 |
dc.identifier.uxxi | AR/0000027093 |
dc.affiliation.instituto | UC3M. Instituto UC3M - Santander de Big Data |
The following license files are associated with this item: