dc.contributor.author | Balmaseda Martín, Ángel Aitor |
dc.contributor.author | Cosmo, Fabio Di |
dc.contributor.author | Pérez Pardo, Juan Manuel![]() |
dc.date.accessioned | 2021-02-25T12:16:03Z |
dc.date.available | 2021-02-25T12:16:03Z |
dc.date.issued | 2019-08-14 |
dc.identifier.bibliographicCitation | Balmaseda, A. Di Cosmo, F. y Pérez Pardo, J. M. (2019). On Z -Invariant Self-Adjoint Extensions of the Laplacian on Quantum Circuits. Symmetry, 11(8), 1047. |
dc.identifier.uri | http://hdl.handle.net/10016/32031 |
dc.description.abstract | An analysis of the invariance properties of self-adjoint extensions of symmetric operators under the action of a group of symmetries is presented. For a given group G, criteria for the existence of G-invariant self-adjoint extensions of the Laplace&-Beltrami operator over a Riemannian manifold are illustrated and critically revisited. These criteria are employed for characterising self-adjoint extensions of the Laplace&-Beltrami operator on an infinite set of intervals, &;937# , constituting a quantum circuit, which are invariant under a given action of the group Z . A study of the different unitary representations of the group Z on the space of square integrable functions on Omega is performed and the corresponding Z -invariant self-adjoint extensions of the Laplace&-Beltrami operator are introduced. The study and characterisation of the invariance properties allows for the determination of the spectrum and generalised eigenfunctions in particular examples. View Full-Text |
dc.description.sponsorship | The authors acknowledge partial support provided by the Ministerio de Economía, Industria y Competitividad" research project MTM2017-84098-P and QUITEMAD proyect P2018/TCS-4342 funded by \Comunidad Autónoma de Madrid". A.B. acknowledges financial support by \Universidad Carlos III de Madrid" through Ph.D. program grant PIPF UC3M 01-1819. F.dC. acknowledges financial support by QUITEMAD proyect P2018/TCS-4342 . |
dc.format.extent | 25 |
dc.language.iso | eng |
dc.publisher | MDPI |
dc.rights | © 2019 by the authors. Licensee MDPI, Basel, Switzerland. |
dc.rights | Atribución 3.0 España |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/es/ |
dc.subject.other | Groups of symmetry |
dc.subject.other | Self-adjoint extensions |
dc.subject.other | Quantum circuits |
dc.title | On Z -Invariant Self-Adjoint Extensions of the Laplacian on Quantum Circuits |
dc.type | article |
dc.subject.eciencia | Matemáticas |
dc.identifier.doi | https://doi.org/10.3390/sym11081047 |
dc.rights.accessRights | openAccess |
dc.relation.projectID | Gobierno de España. MTM2017-84098-P |
dc.relation.projectID | Comunidad de Madrid. P2018/TCS-4342 |
dc.type.version | publishedVersion |
dc.identifier.publicationfirstpage | 1 |
dc.identifier.publicationissue | 8 |
dc.identifier.publicationlastpage | 21 |
dc.identifier.publicationtitle | Symmetry |
dc.identifier.publicationvolume | 11 |
dc.identifier.uxxi | AR/0000026629 |
dc.contributor.funder | Comunidad de Madrid |
dc.contributor.funder | Ministerio de Economía y Competitividad (España) |
The following license files are associated with this item: