Cita:
Ciaglia, F. M., Marmo, G. y Pérez Pardo, J.M. (2018). Generalized potential functions in differential geometry and information geometry. International Journal of Geometric Methods in Modern Physics, 16(01), 1940002.
Patrocinador:
Comunidad de Madrid Ministerio de Economía y Competitividad (España)
Agradecimientos:
The authors want to thank the scientific committee of the “XXVI International Fall Workshop on Geometry and Physics” for giving them the opportunity to present this research. G.M. acknowledges financial support from the Spanish Ministry of Economy and Competitiveness, through the Severo Ochoa Programme for Centres of Excellence in RD (SEV-2015/0554), and would like to thank the support provided by the Santander/UC3M Excellence Chair Programme 2016/2017. J.M.P.P. was supported by QUITEMAD+ S2013/ICE-2801, the Spanish MINECO grant MTM2017-84098-P and the “Juan de la Cierva - Incorporación” Proyect 2018/00002/001.
Proyecto:
Comunidad de Madrid. S2013/ICE-2801 Gobierno de España. IJCI-2015-23308 Gobierno de España. MTM2017-84098-P
Palabras clave:
Information geometry
,
Generalized potential functions
,
Inverse problem
Potential functions can be used for generating potentials of relevant geometric structures for a Riemannian manifold such as the Riemannian metric and affine connections. We study whether this procedure can also be applied to tensors of rank four and find a nePotential functions can be used for generating potentials of relevant geometric structures for a Riemannian manifold such as the Riemannian metric and affine connections. We study whether this procedure can also be applied to tensors of rank four and find a negative answer. We study this from the perspective of solving the inverse problem and also from an intrinsic point of view.[+][-]