dc.contributor.author | Deaño Cabrera, Alfredo![]() |
dc.date.accessioned | 2021-02-23T13:08:39Z |
dc.date.available | 2021-02-23T13:08:39Z |
dc.date.issued | 2018-10-03 |
dc.identifier.bibliographicCitation | SIGMA, (2018), v.14, 107, [19] p. |
dc.identifier.issn | 1815-0659 |
dc.identifier.uri | http://hdl.handle.net/10016/32004 |
dc.description | This paper is a contribution to the Special Issue on Painlevé Equations and Applications in Memory of Andrei Kapaev. The full collection is available at https://www.emis.de/journals/SIGMA/Kapaev.html |
dc.description.abstract | In this paper we obtain large z asymptotic expansions in the complex plane forthe tau function corresponding to special function solutions of the Painlevé II differentialequation. Using the fact that these tau functions can be written as n × n Wronskiandeterminants involving classical Airy functions, we use Heine's formula to rewrite them asn-fold integrals, which can be asymptotically approximated using the classical method ofsteepest descent in the complex plane. |
dc.description.sponsorship | The author acknowledges financial support from the EPSRC grant "Painlevé equations: analytical properties and numerical computation", reference EP/P026532/1, and from the project MTM2015-65888-C4-2-P from the Spanish Ministry of Economy and Competitivity. The author wishes to thank M. Fasondini, D. Huybrechs, A. Iserles, A.R. Its, A.B.J. Kuijlaars, A.F. Loureiro, C. Pechand W. Van Assche for stimulating discussions on the topic and scope of this paper, as well as the organisers of the workshop "Painlevé Equations and Applications" held at the University of Michigan, August 25-29, 2017, for their hospitality. The comments, remarks and corrections of the anonymous referees have lead to an improved version of the paper, and they are greatly appreciated. |
dc.format.extent | 19 |
dc.language.iso | eng |
dc.publisher | Kiïv: Department of Applied Research Institute of Mathematics of National Academy of Science of Ukraine |
dc.rights | The authors retain the copyright for their papers published in SIGMA under the terms of the Creative Commons Attribution-ShareAlike License |
dc.rights | Atribución-NoComercial-SinDerivadas 3.0 España |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ |
dc.subject.other | Painlevé equations |
dc.subject.other | Asymptotic expansions |
dc.subject.other | Airy functions |
dc.title | Large z Asymptotics for Special Function Solutions of Painlevé II in the Complex Plane |
dc.type | article |
dc.description.status | Publicado |
dc.subject.eciencia | Matemáticas |
dc.identifier.doi | https://doi.org/10.3842/SIGMA.2018.107 |
dc.rights.accessRights | openAccess |
dc.relation.projectID | Gobierno de España. MTM2015-65888-C4-2-P |
dc.type.version | publishedVersion |
dc.identifier.publicationfirstpage | 1 |
dc.identifier.publicationissue | 107 |
dc.identifier.publicationlastpage | 19 |
dc.identifier.publicationtitle | Symmetry Integrability and Geometry: Methods and Applications |
dc.identifier.publicationvolume | 14 |
dc.identifier.uxxi | AR/0000026483 |
dc.contributor.funder | Ministerio de Economía y Competitividad (España) |
dc.affiliation.dpto | UC3M. Departamento de Matemáticas |
dc.affiliation.grupoinv | UC3M. Grupo de Investigación: Análisis Aplicado |
The following license files are associated with this item: