xmlui.dri2xhtml.METS-1.0.item-contributor-funder:
European Commission Ministerio de Economía y Competitividad (España)
Sponsor:
The authors would like to acknowl-edge the support of the project TEXEO (TEC2016-80339-R), funded by Spanish MINECO and the EU-H2020 Metrohaul project (grant no. 761727).
Project:
info:eu-repo/grantAgreement/EC/H2020/761727-METROHAUL Gobierno de España. TEC2016-80339-R-TEXEO
Keywords:
Optical WDM networks
,
Routing and wavelength assignment
,
Machine learning
,
Deep neural networks
,
ONOS
,
Software defined networking
,
Network automation
Recently, machine learning (ML) has attracted the attention of both researchers and practitioners to address several issues in the optical networking field. This trend has been mainly driven by the huge amount of available data (i.e., signal quality indicatorsRecently, machine learning (ML) has attracted the attention of both researchers and practitioners to address several issues in the optical networking field. This trend has been mainly driven by the huge amount of available data (i.e., signal quality indicators, network alarms, etc.) and to the large number of optimization parameters which feature current optical networks (such as, modulation format, lightpath routes, transport wavelength, etc.). In this paper, we leverage the techniques from the ML discipline to efficiently accomplish the routing and wavelength assignment (RWA) for an input traffic matrix in an optical WDM network. Numerical results show that near-optimal RWA can be obtained with our approach, while reducing computational time up to 93% in comparison to a traditional optimization approach based on integer linear programming. Moreover, to further demonstrate the effectiveness of our approach, we deployed the ML classifier into an ONOS-based software defined optical network laboratory testbed, where we evaluate the performance of the overall RWA process in terms of computational time.[+][-]