dc.contributor.author |
Gómez Silva, María José
|
dc.contributor.author |
Izquierdo, Ebroul |
dc.contributor.author |
Escalera Hueso, Arturo de la
|
dc.contributor.author |
Armingol Moreno, José María
|
dc.date.accessioned |
2021-01-25T13:07:06Z |
dc.date.available |
2021-01-25T13:07:06Z |
dc.date.issued |
2019-09-11 |
dc.identifier.bibliographicCitation |
M.J. Gómez-Silva, E. Izquierdo, Escalera, A. de la and Armingol, J.M. “Transferring Learning from Multi-person Tracking to Person Re-identification”, Integrated Computer-Aided Engineering, vol. 26, nº 4, pp. 329-344, 1 Jan. 2019 |
dc.identifier.issn |
1069-2509 |
dc.identifier.uri |
http://hdl.handle.net/10016/31768 |
dc.description.abstract |
Learning to discriminate, whether two person-images correspond to the same person or not, is a daunting challenge when only two images per person are available. This task is called single-shot person re-identification (re-id) and it assumes that each one of the two available images was captured from a different camera view entailing variations in pose, resolution, scale, illumination and background. Addressing this task through supervised training of a deep convolutional neural network is susceptible to model overfitting due to the critical lack of enough labelled data. This paper proposes to exploit the transference of learning previously acquired from a multi-object-tracking (MOT) domain. In this context, a unique deep triplet architecture has been trained on both domains. Six different levels of transfer learning have been implemented and evaluated, proving that the transference of leaning from a different domain remarkably increases the re-id performance. Experimental results validate accuracy and robustness of the proposed method as comparable to other state-of-the-art techniques. These results also confirm that, despite the data problem, deep learning is also applicable to the single-shot re-id task. |
dc.description.sponsorship |
This work was supported by the Spanish Govern-ment through the CICYT projects (TRA2015-63708-R and TRA2016-78886-C3-1-R), and Ministerio de Educación, Cultura y Deporte para la Formación de Profesorado Universitario (FPU14/02143), Ayudas a la movilidad para estancias breves y traslados tempo-rales (2018) of Programa Estatal de promoción del ta-lento y su empleabilidad, , and Comunidad de Madrid through SEGVAUTO-TRIES (S2013/MIT- 2713). We gratefully acknowledge the support of NVIDIA Corporation with the donation of the GPUs used for this research. |
dc.language.iso |
eng |
dc.publisher |
IOP Press |
dc.rights |
© IOS Press |
dc.subject.other |
Transfer learning |
dc.subject.other |
Deep learning |
dc.subject.other |
Person re-identification |
dc.subject.other |
Multi-object tracking |
dc.subject.other |
Pair-wise binary classification |
dc.title |
Transferring learning from multi-person tracking to person re-identification |
dc.type |
article |
dc.subject.eciencia |
Robótica e Informática Industrial |
dc.identifier.doi |
https://doi.org/10.3233/ICA-190603 |
dc.rights.accessRights |
openAccess |
dc.relation.projectID |
Gobierno de España. TRA2015-63708-R |
dc.relation.projectID |
Gobierno de España. TRA2016-78886-C3-1-R |
dc.relation.projectID |
Comunidad de Madrid. S2013/MIT- 2713 |
dc.type.version |
acceptedVersion |
dc.identifier.publicationfirstpage |
329 |
dc.identifier.publicationissue |
4 |
dc.identifier.publicationlastpage |
344 |
dc.identifier.publicationtitle |
Integrated Computer-Aided Engineering |
dc.identifier.publicationvolume |
26 |
dc.identifier.uxxi |
AR/0000025756 |
dc.contributor.funder |
Ministerio de Economía y Competitividad (España) |
dc.contributor.funder |
Comunidad de Madrid |
dc.affiliation.dpto |
UC3M. Departamento de Ingeniería de Sistemas y Automática |
dc.affiliation.grupoinv |
UC3M. Grupo de Investigación: Laboratorio de Sistemas Inteligentes |