dc.contributor.author |
Chen, Chun Wei |
dc.contributor.author |
Lera, Natalia |
dc.contributor.author |
Chaunsali, Rajesh |
dc.contributor.author |
Torrent, Daniel |
dc.contributor.author |
Álvarez, Joseé Vicente |
dc.contributor.author |
Yang, Jinkyu |
dc.contributor.author |
San-José, Pablo |
dc.contributor.author |
Christensen, Johan
|
dc.date.accessioned |
2020-12-14T10:04:31Z |
dc.date.available |
2020-12-20T00:00:05Z |
dc.date.issued |
2019-12-20 |
dc.identifier.bibliographicCitation |
Advanced Materials, (2019), 31(51), 1904386. |
dc.identifier.issn |
0935-9648 |
dc.identifier.uri |
http://hdl.handle.net/10016/31589 |
dc.description.abstract |
The discovery of topologically nontrivial electronic systems has opened a new age in condensed matter research. From topological insulators to topological superconductors and Weyl semimetals, it is now understood that some of the most remarkable and robust phases in electronic systems (e.g., quantum Hall or anomalous quantum Hall) are the result of topological protection. These powerful ideas have recently begun to be explored also in bosonic systems. Topologically protected acoustic, mechanical, and optical edge states have been demonstrated in a number of systems that recreate the requisite topological conditions. Such states that propagate without backscattering could find important applications in communications and energy technologies. Here, a topologically bound mechanical state, a different class of nonpropagating protected state that cannot be destroyed by local perturbations, is demonstrated. It is in particular a mechanical analogue of the well‐known Majorana bound states (MBSs) of electronic topological superconductor systems. The topological binding is implemented by creating a Kekulé distortion vortex on a 2D mechanical honeycomb superlattice that can be mapped to a magnetic flux vortex in a topological superconductor. |
dc.description.sponsorship |
C.-W.C. and N.L. contributed equally to this work. J.C. acknowledges the support from the European Research Council (ERC) through the Starting Grant No. 714577 PHONOMETA and from the MINECO through a Ramón y Cajal grant (Grant No. RYC-2015-17156). J.Y. gratefully acknowledges the support from the NSF (CAREER1553202 and EFRI-1741685). P.S.-J. acknowledges support from MINECO/FEDER through Grant No. FIS2015-65706-P. N.L and J.V.A. acknowledge financial support from MINECO grant FIS2015-64886-C5-5-P. D.T. acknowledges financial support through the “Ramón y Cajal” fellowship under grant number RYC-2016-21188. |
dc.format.extent |
6 |
dc.language.iso |
eng |
dc.publisher |
Wiley-VCH |
dc.rights |
© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
dc.subject.other |
Majorana bound states |
dc.subject.other |
Topological insulators |
dc.title |
Mechanical analogue of a Majorana bound state |
dc.type |
article |
dc.description.status |
Publicado |
dc.subject.eciencia |
Física |
dc.identifier.doi |
https://doi.org/10.1002/adma.201904386 |
dc.rights.accessRights |
openAccess |
dc.relation.projectID |
info:eu-repo/grantAgreement/EC/H2020/714577/PHONOMETA |
dc.relation.projectID |
Gobierno de España. RYC-2015-17156 |
dc.relation.projectID |
Gobierno de España. FIS2015-65706-P |
dc.relation.projectID |
Gobierno de España. FISFIS2015-64886-C5-5-P |
dc.relation.projectID |
Gobierno de España. RYC-2016-21188 |
dc.type.version |
acceptedVersion |
dc.identifier.publicationfirstpage |
1 |
dc.identifier.publicationissue |
51, 1904386 |
dc.identifier.publicationlastpage |
6 |
dc.identifier.publicationtitle |
ADVANCED MATERIALS |
dc.identifier.publicationvolume |
31 |
dc.identifier.uxxi |
AR/0000024389 |
dc.contributor.funder |
Ministerio de Economía y Competitividad (España) |
dc.contributor.funder |
European Commission |
dc.affiliation.dpto |
UC3M. Departamento de Física |