dc.contributor.author |
Willatzen, Morten |
dc.contributor.author |
Gao, Penglin |
dc.contributor.author |
Christensen, Johan
|
dc.contributor.author |
Wang, Zhong Lin |
dc.date.accessioned |
2020-12-11T09:36:16Z |
dc.date.available |
2021-09-24T23:00:05Z |
dc.date.issued |
2020-09-24 |
dc.identifier.bibliographicCitation |
Advanced Functional Materials, (2020), 30(39), 2003503, p.: 1-7. |
dc.identifier.issn |
1616-301X |
dc.identifier.uri |
http://hdl.handle.net/10016/31575 |
dc.description.abstract |
A quantitative discussion of the combined influence of three electromechanical effects: piezoelectricity, flexoelectricity, and electrostriction in solids is provided for acoustic absorption and gain. While piezoelectricity occurs in non-centrosymmetric materials only, flexoelectricity and electrostriction exist in all materials. Two important new results are demonstrated: 1) the possibility to realize acoustic gain in all materials (centrosymmetric and non-centrosymmetric) when the acoustic Cherenkov condition is fulfilled, and 2) realization of acoustic gain in the presence of a strong dc electric field, even when the Cherenkov condition is not fulfilled, in the case of strong cross-coupling between piezoelectricity, flexoelectricity, and electrostriction. A simple analytical expression for the acoustic dispersion relation is derived for the combined effect of piezoelectricity, flexoelectricity, and electrostriction. At lower frequencies, the piezoelectric effect dominates for inversion-asymmetric materials. At high frequencies (˜>1 MHz) flexoelectricity becomes increasingly important and eventually provides a major mechanism for gain and absorption in barium titanate (BaTiO3). In the presence of strong electric fields (˜>1 MV m-1), electrostriction provides a dominant isolated contribution to absorption/gain in BaTiO3. Strong coupling between the three electromechanical contributions determines the total absorption/gain coefficient. |
dc.format.extent |
7 |
dc.language.iso |
eng |
dc.publisher |
Wiley-VCH |
dc.rights |
© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
dc.subject.other |
Acoustic gain |
dc.subject.other |
Cherenkov effect |
dc.subject.other |
Electrostriction |
dc.subject.other |
Piezoelectricity |
dc.subject.other |
Flexoelectricity |
dc.title |
Acoustic gain in solids due to piezoelectricity, flexoelectricity, and electrostriction |
dc.type |
article |
dc.description.status |
Publicado |
dc.subject.eciencia |
Física |
dc.subject.eciencia |
Materiales |
dc.identifier.doi |
https://doi.org/10.1002/adfm.202003503 |
dc.rights.accessRights |
openAccess |
dc.type.version |
acceptedVersion |
dc.identifier.publicationfirstpage |
1 |
dc.identifier.publicationissue |
39, 2003503 |
dc.identifier.publicationlastpage |
7 |
dc.identifier.publicationtitle |
ADVANCED FUNCTIONAL MATERIALS |
dc.identifier.publicationvolume |
30 |
dc.identifier.uxxi |
AR/0000026434 |