xmlui.dri2xhtml.METS-1.0.item-contributor-funder:
European Commission Ministerio de Economía y Competitividad (España)
Sponsor:
This work was supported by the National Key R&D Program of China (2017YFA0303702), NSFC (11922407, 11834008, 11874215, 11674172, and 11574148), Jiangsu Provincial NSF (BK20160018), the Fundamental Research Funds for the Central Universities (020414380001), and Nanjing University Innovation and Creative Program for Ph.D. candidate (CXCY17-11).
Z.Z. acknowledges the support from the China Scholarship Council. J.C. acknowledges the support from the European Research Council (ERC) through the Starting Grant 714577 PHONOMETA and from the MINECO through a Ramón y Cajal grant (Grant No. RYC-2015-17156).
Project:
info:eu-repo/grantAgreement/EC/H2020/714577/PHONOMETA Gobierno de España. RYC-2015-17156
Higher-order topological insulators (HOTIs) belong to a new class of materials with unusual topological phases. They have garnered considerable attention due to their capabilities in confining energy at the hinges and corners, which is entirely protected by thHigher-order topological insulators (HOTIs) belong to a new class of materials with unusual topological phases. They have garnered considerable attention due to their capabilities in confining energy at the hinges and corners, which is entirely protected by the topology, and have thus become attractive structures for acoustic wave studies and control. However, for most practical applications at audible and low frequencies, compact and subwavelength implementations are desirable in addition to providing robust guiding of sound beyond a single-frequency operation. Here, a holey HOTI capable of sustaining deeply confined corner states 50 times smaller than the wavelength is proposed. A remarkable resilience of these surface-confined acoustic states against defects is experimentally observed, and topologically protected sound is demonstrated in three different frequency regimes. Concerning this matter, the findings will thus have the capability to push forward exciting applications for robust acoustic imaging way beyond the diffraction limit.[+][-]