Prediction accuracy of bivariate score-driven risk premium and volatility filters: an illustration for the Dow Jones

e-Archivo Repository

Show simple item record

dc.contributor.author Blazsek, Szabolcs
dc.contributor.author Escribano, Álvaro
dc.contributor.author Licht, Adrian
dc.contributor.editor Universidad Carlos III de Madrid. Departamento de Economía
dc.date.accessioned 2020-11-05T15:45:33Z
dc.date.available 2020-11-05T15:45:33Z
dc.date.issued 2020-11-05
dc.identifier.issn 2340-5031
dc.identifier.uri http://hdl.handle.net/10016/31339
dc.description.abstract In this paper, we introduce Beta-t-QVAR (quasi-vector autoregression) for the joint modelling of score-driven location and scale. Asymptotic theory of the maximum likelihood (ML) estimatoris presented, and sufficient conditions of consistency and asymptotic normality of ML are proven. Forthe joint score-driven modelling of risk premium and volatility, Dow Jones Industrial Average (DJIA)data are used in an empirical illustration. Prediction accuracy of Beta-t-QVAR is superior to theprediction accuracies of Beta-t-EGARCH (exponential generalized AR conditional heteroscedasticity),A-PARCH (asymmetric power ARCH), and GARCH (generalized ARCH). The empirical results motivate the use of Beta-t-QVAR for the valuation of DJIA options.
dc.language.iso eng
dc.relation.ispartofseries Working paper. Economics
dc.relation.ispartofseries 20-10
dc.rights Atribución-NoComercial-SinDerivadas 3.0 España
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subject.other Volatility
dc.subject.other Risk Premium
dc.subject.other Dynamic Conditional Score
dc.subject.other Generalized Autoregressive Score
dc.title Prediction accuracy of bivariate score-driven risk premium and volatility filters: an illustration for the Dow Jones
dc.type workingPaper
dc.subject.jel C22
dc.subject.jel C58
dc.identifier.uxxi DT/0000001850
dc.affiliation.dpto UC3M. Departamento de Economía
 Find Full text

Files in this item

*Click on file's image for preview. (Embargoed files's preview is not supported)


The following license files are associated with this item:

This item appears in the following Collection(s)

Show simple item record