dc.contributor.author | Blazsek, Szabolcs |
dc.contributor.author | Escribano, Álvaro![]() |
dc.contributor.author | Licht, Adrian |
dc.contributor.editor | Universidad Carlos III de Madrid. Departamento de Economía |
dc.date.accessioned | 2020-11-05T15:45:33Z |
dc.date.available | 2020-11-05T15:45:33Z |
dc.date.issued | 2020-11-05 |
dc.identifier.issn | 2340-5031 |
dc.identifier.uri | http://hdl.handle.net/10016/31339 |
dc.description.abstract | In this paper, we introduce Beta-t-QVAR (quasi-vector autoregression) for the joint modelling of score-driven location and scale. Asymptotic theory of the maximum likelihood (ML) estimatoris presented, and sufficient conditions of consistency and asymptotic normality of ML are proven. Forthe joint score-driven modelling of risk premium and volatility, Dow Jones Industrial Average (DJIA)data are used in an empirical illustration. Prediction accuracy of Beta-t-QVAR is superior to theprediction accuracies of Beta-t-EGARCH (exponential generalized AR conditional heteroscedasticity),A-PARCH (asymmetric power ARCH), and GARCH (generalized ARCH). The empirical results motivate the use of Beta-t-QVAR for the valuation of DJIA options. |
dc.language.iso | eng |
dc.relation.ispartofseries | Working paper. Economics |
dc.relation.ispartofseries | 20-10 |
dc.rights | Atribución-NoComercial-SinDerivadas 3.0 España |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ |
dc.subject.other | Volatility |
dc.subject.other | Risk Premium |
dc.subject.other | Dynamic Conditional Score |
dc.subject.other | Generalized Autoregressive Score |
dc.title | Prediction accuracy of bivariate score-driven risk premium and volatility filters: an illustration for the Dow Jones |
dc.type | workingPaper |
dc.subject.jel | C22 |
dc.subject.jel | C58 |
dc.identifier.uxxi | DT/0000001850 |
dc.affiliation.dpto | UC3M. Departamento de Economía |
The following license files are associated with this item: