Modeling dynamic spherical cavity expansion in elasto-viscoplastic media

e-Archivo Repository

Show simple item record Santos, T. dos Brezolin, A. Rossi, R. Rodríguez-Martínez, José A. 2020-09-01T10:25:17Z 2021-06-01T23:00:04Z 2020-06
dc.identifier.bibliographicCitation Acta mechanica, 231(6), June 2020, pp. 2381-2397
dc.identifier.issn 0001-5970
dc.identifier.issn 1619-6937 (online)
dc.description.abstract In this paper, we extend the dynamic spherical cavity expansion model for rate-independent materials developed by Durban and Masri (Int J Solids Struct 41(20):5697-5716, 2004), Masri and Durban (J Appl Mech 72(6):887-898, 2005), and Cohen et al. (J Appl Mech 77(4):041009, 2010) to viscoplastic media. For that purpose, we describe the material behavior with an isotropic Perzyna-type overstress formulation (Perzyna in Q Appl Math 20:321&#-332, 1963; Adv Appl Mech 9:243-377, 1966) in which the material rate dependence is controlled by the viscosity parameter η. The theoretical predictions of the cavity expansion model, which assumes that the cavity expands at constant velocity, are compared with finite element simulations performed in ABAQUS/Explicit (Abaqus Explicit v6.13 User's Manual, ABAQUS Inc., Richmond). The agreement between theory and numerical simulations is excellent for the whole range of cavitation velocities investigated, and for different values of the parameter η. We show that, as opposed to the steady-state self-similar solutions obtained for rate-independent materials (Durban and Masri 2004; Masri and Durban 2005; Cohen et al. 2010), the material viscosity leads to time-dependent cavitation fields and stress relaxation as the cavity enlarges. In addition, we also show that the material viscosity facilitates to model the shock waves that emerge at the highest cavitation velocities investigated, controlling the amplitude and the width of the shock front.
dc.description.sponsorship The research leading to these results has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme. Project PURPOSE, Grant Agreement 758056. RR wishes to acknowledge the support of CNPq, Conselho Nacional de Desenvolvimento Científico e Tecnológico, grant number 306058/2018-9.
dc.format.extent 17
dc.language.iso eng
dc.publisher Springer-Verlag GmbH Austria
dc.rights © Springer-Verlag GmbH Austria, part of Springer Nature 2020
dc.subject.other Dynamic cavity expansion
dc.subject.other Shock waves
dc.subject.other Viscoplasticity
dc.subject.other Stress relaxation
dc.title Modeling dynamic spherical cavity expansion in elasto-viscoplastic media
dc.type article
dc.subject.eciencia Ingeniería Mecánica
dc.rights.accessRights openAccess
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/758056-PURPOSE
dc.type.version acceptedVersion
dc.identifier.publicationfirstpage 2381
dc.identifier.publicationissue 6
dc.identifier.publicationlastpage 2397
dc.identifier.publicationtitle Acta Mechanica
dc.identifier.publicationvolume 231
dc.identifier.uxxi AR/0000025865
carlosiii.embargo.terms 2021-06-01
dc.contributor.funder European Commission
 Find Full text

Files in this item

*Click on file's image for preview. (Embargoed files's preview is not supported)

This item appears in the following Collection(s)

Show simple item record