A survey about deep learning for constellation design in communications

e-Archivo Repository

Show simple item record

dc.contributor.author López Morales, Manuel José
dc.contributor.author Chen Hu, Kun
dc.contributor.author García-Armada, Ana
dc.date.accessioned 2020-06-15T09:06:38Z
dc.date.available 2021-03-17T11:48:40Z
dc.date.issued 2020-11-10
dc.identifier.bibliographicCitation 12th IEEE/IET International Symposium on Communication Systems, Networks and Digital Signal Processing, (CSNDSP), 20-22, July 2020, Porto, Portugal (Online), 4 pp.
dc.identifier.isbn 978-1-7281-6743-5
dc.identifier.uri http://hdl.handle.net/10016/30612
dc.description Proceeding of: 12th IEEE/IET International Symposium on Communication Systems, Networks and Digital Signal Processing, (CSNDSP), 20-22, July 2020, (Online).
dc.description.abstract The performance of communication systems dependson the choice of constellations, designed in an end-to-endmanner. In case of a mathematical intractability, either becauseof complexity or even lack of channel model only sub-optimal solutionscan be provided with an analytical approach. We presentend-to-end learning, a recent technique in communications tolearn optimal transmitter and receiver architectures based ondeep neural networks (DNNs) architectures. We discuss cases inwhich this technique has been used to design constellations inwhich channel model intractability repressed from a mathematicalanalysis.
dc.description.sponsorship This work has received funding from the European Union (EU) Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie ETN TeamUp5G, grant agreement No. 813391, and from the Spanish National Project TERESA-ADA (TEC2017-90093-C3-2-R) (MINECO/AEI/FEDER, UE).
dc.format.extent 4
dc.language.iso eng
dc.publisher IEEE
dc.rights © 2020 IEEE.
dc.subject.other Machine learning
dc.subject.other End-to-end learning
dc.subject.other Channel imperfections
dc.subject.other Constellation design
dc.subject.other Deep neural networks architectures
dc.title A survey about deep learning for constellation design in communications
dc.type conferenceObject
dc.type bookPart
dc.subject.eciencia Telecomunicaciones
dc.identifier.doi https://doi.org/10.1109/CSNDSP49049.2020.9249528
dc.rights.accessRights openAccess
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/813391/TeamUp5G
dc.relation.projectID Gobierno de España. TEC2017-90093-C3-2-R/TERESA-ADA
dc.type.version acceptedVersion
dc.relation.eventdate 20-22 July, 2020
dc.relation.eventnumber 12
dc.relation.eventtitle IEEE/IET International Symposium on Communication Systems, Networks and Digital Signal Processing, (CSNDSP).
dc.relation.eventtype proceeding
dc.identifier.publicationfirstpage 1
dc.identifier.publicationlastpage 4
dc.identifier.uxxi CC/0000030585
dc.contributor.funder European Commission
dc.contributor.funder Ministerio de Economía y Competitividad (España)
 Find Full text

Files in this item

*Click on file's image for preview. (Embargoed files's preview is not supported)


This item appears in the following Collection(s)

Show simple item record