xmlui.dri2xhtml.METS-1.0.item-contributor-funder:
Ministerio de Economía y Competitividad (España)
Sponsor:
This work was partially funded by NIH grants R01-HL-098686
and U01 EB018753, by Spanish Ministerio de Economia y Competitividad
(projects TEC2013-47270-R and RTC-2014-3028-1) and the Spanish Ministerio
de Economia, Industria y Competitividad (projects DPI2016-79075-R AEI/FEDER, UE - Agencia Estatal de Investigación and DTS17/00122 Instituto de Salud Carlos III - FIS), and co-financed by ERDF (FEDER) Funds from the European Commission, “A way of making Europe”. The CNIC is supported by the Spanish Ministerio de Economia, Industria y Competitividad and the Pro CNIC Foundation, and is a Severo Ochoa Center of Excellence (SEV-2015-0505).
Project:
Gobierno de España. TEC2013-47270-R Gobierno de España. RTC-2014-3028-1 Gobierno de España. DPI2016-79075-R/AEI/FEDER Gobierno de España. DTS17/00122 Gobierno de España. SEV-2015-0505
CT images are often affected by beam-hardening artifacts due to the polychromatic nature of the X-ray spectra. These artifacts appear in the image as cupping in homogeneous areas and as dark bands between dense regions, such as bones. This paper proposes a simCT images are often affected by beam-hardening artifacts due to the polychromatic nature of the X-ray spectra. These artifacts appear in the image as cupping in homogeneous areas and as dark bands between dense regions, such as bones. This paper proposes a simplified statistical reconstruction method for X-ray CT based on Poisson statistics that accounts for the non-linearities caused by beam hardening. The main advantages of the proposed method over previous algorithms is that it avoids the preliminary segmentation step, which can be tricky, especially for low-dose scans, and it does not require knowledge of the whole source spectrum, which is often unknown. Each voxel attenuation is modeled as a mixture of bone and soft tissue by defining density-dependent tissue fractions, maintaining one unknown per voxel. We approximate the energy-dependent attenuation corresponding to different combinations of bone and soft tissue, so called beam-hardening function, with the 1D function corresponding to water plus two parameters that can be tuned empirically. Results on both simulated data with Poisson sinogram noise and two rodent studies acquired with the ARGUSCT system showed a beam hardening reduction (both cupping and dark bands) similar to analytical reconstruction followed by post-processing techniques, but with reduced noise and streaks in cases with low number of projections, as expected for statistical image reconstruction.[+][-]